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FROM THE AUTHOR 

The movement of meteorites, that is ,  of bodies of considerable mass, through the atmosphere 
of the earth takes place at enormous velocities-from 11 to 72 km/sec. At such velocities the 
flying meteorite forms a very strong shock wave, comparable with the shock waves of nuclear ex- 
plosions and considerably exceeding in amplitude the shock waves formed in the course of flow 
about supersonic aircraft, missiles or rockets, as well as models in aerodynamic experiments. 

On the other hand, in the shock wave of a flying meteorite there is an interaction of the 
shock wave with the body leading to  the melting and evaporation of that body. This circumstance 
differentiates the shock waves of meteorites from explosion waves. 

Meteoric bodies of smaller s ize ,  engendering meteoric phenomena and having, naturally, the 
s a m e  velocities as do meteorite-forming bodies, fly under different conditions of flow and do not 
form a shock wave. 

All this differentiates the problem of the movement of meteorites in the atmosphere from 
problems connected with the study of shock waves and the hypersonic flow about bodies a t  veloci- 
t ies  of less  than 11 km/sec, as well as the movement of meteors. The complexity of the problem 
under consideration l ies in the necessity for taking into account nonequilibrium processes in the 
shock waves, interaction of the wave with a body subjected to ablation (evaporation) and the 
almost total lack of experimental data. 

This work does not c l a i m  to be an attempt a t  creating a theory of the movement of a meteorite 
in the atmosphere; the development of such a theory will yet require no s m a l l  amount of effort on 
the part of large teams of specialists.  Our objective is a more modest problem: to systematize 
and bring into clear focus the basic elementary processes originating in the shock wave and in the 
course of i ts  interaction with the meteorite. We have devoted particular attention to  the kinetics 
of ionization, and to  i t s  influence on the temperature distribution within the shock wave. Unfortu- 
nately, to now calculations of the thermal action of the shock wave on a meteorite have taken 
either no account a t  all of ionization, or only very rough estimates were made, i t  being possible 
for the errors of these estimates to attain one order of magnitude in the value of the temperature, 
and several orders in the estimates of the heat flow. This applies a lso to  the effect of thermal 
blocking. 
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No consideration is given by us  to questions connected with the properties of the ballistic 
waves of meteorites at considerable distances from the  body, and with the action of these ballistic 
waves on terrestrial objects. 

We assume that the reader is familiar with the basic physical theory of meteors within the 
scope of B. Yu. Levin's monograph "Fizicheskaya teoriya meteorov i meteornoye veschestvo v 
solnechnoy sisteme" (The Physical Theory of Meteors and Meteoric Substance in the Solar Sys- 
tem), as well as with the general principles of gasdynamics. 

We take this opportunity to express deep gratitude to the scientific editor of the book, Prof. 
K. P. Stanyukovich, for constant attention and assis tance in the work, to  Doctor of Physical and 
Mathematical Sciences, B. Yu. Levin, Doctor of Physical and Mathematical Sciences, Yu. P. 
Rayzer, Doctor of Physical and Mathematical Sciences, L. M. Biberman, Doctor of Physical and 
Mathematical Sciences, S. B. Pikel'ner, Professor G. I .  Pokrovskiy for helpful creative discus- 
sions and remarks, Candidates of Physical and Mathematical Sciences, 0. M. Bolotsenkovskiy, 
and N. M. Kuznetsov for the presentation of valuable materials. 

The author thanks programmer A. N. Chigorin for compiling the necessary computations on 
the "Strela" electronic computer, a s  well as the Council of the Moscow. Division of the All-Union 
Astronomical and Geodetic Society and the Astronomical Council of the Academy of Sciences 
USSR for making these calculations possible. 

The author will gratefully accept all remarks and requests connected with the present work; 
these should be directed to the following address: Moscow, K-9, p/ya(P.O. Box)1268, VAVO, 
V. A. Bronshten. 

V. A. Bronshten 

I, 

.... .. . . . . .- .. - - ..: . .- - -  ..... - - . .. . ,,,,., . . .... ~. 
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INTRODUCTION 

Section 1. Formulation of the Problem 

The problem of the movement in the terrestrial atmosphere of large cosmic bodies capable of 
penetrating the atmosphere and landing on the earth in the form of meteorites is a t  present of great 
theoretical and practical interest. The theoretical value of this problem is determined by the 
multiformity of the physical phenomena accompanying the movement of a large body through the 
atmosphere a t  a cosmic velocity (the formation of a strong shock wave, heating, the dissociation 
and ionization of air behind the front of the shock wave, heat transfer, ablation of the meteoric 
body, etc.). The practical value of this problem is connected with the development of space 
flights and the problem of the return of space ships to earth. 

By now, because of the research of many special is ts ,  in particular I. Khoppe, B. Yu. Levin, 
K. P. Stanyukovich and Opik, a theory of the phenomena accompanying the flight of meteors in 
the atmosphere, which has received the name of the physical theory of meteors, has been worked 
out in detail. This theory is applicable to meteoric bodies with a diameter of not more than 1 cm, 
which engender the conventional and bright meteors. Such bodies are completely destroyed in the 
atmosphere, thereby not reaching the earth’s surface. 

In a considerably l e s s  developed condition is the theory of the movement of large, meteorite- 
forming masses in the atmosphere; actually speaking, such a theory has  not yet been developed. 
The multiformity of the problems that must be solved, in order that such a theory be developed, is 
so broad that for their solution the participation of large teams of scient is ts  of different special- 
t ies  is required. 

In order to provide a conception of the place of the phenomenon under consideration, among 
others of a similar nature that are connected with motion with respect to a large body through 
rarefied gas, we shal l  construct a schematic m a s s ,  the velocity diagram (Figure l ) ,  on which we 
shal l  enter, on the bas i s  of m a s s  and velocity arguments, the areas  occupied by bodies of various 
classes. 
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v, cm/sec 

Figure 1. Diagram, in the plane M, v, of the movement of 
various bodies under supersonic conditions. 

1. Aircraft. The masses of modern aircraft are from 100 kg to  200 tons, i.e., from lo5 to 
2 . 10' g; the velocities attained are up to 1 km/sec, and more. 

2. Meteorological, geophysical, and ballistic rockets. The masses are of the same order 
as in the case of aircraft; the velocities range from 1 to 8 km/sec, because when orbital velocity 
is exceeded this rocket passes  into the next c lass  of bodies. 

3. Artificial earth satellites and space rockets. The masses are from 1.5 kg to 6.5 tons, 
i.e., from 1.5 . lo3 to  6.5 . lo6 g; the velocities range from 8 to 12 km/sec. 

4. Models used in aerodynamic experiments (in wind tunnels and supersonic tunnels, etc.). 
The approximate range of masses is 1 to lo4 g; the velocity range is 0.3 to 7 km/sec. 

5. Meteors. The m a s s  range of bodies engendering conventional and telescopic meteors is 
from to 1 g; the velocity range is 11 to 72 km/sec.l 

~ 

'Finer meteoric bodies do not create luminescence and, decelerating in the atmosphere, fall to 
the earth without loss of m a s s .  These bodies, called micrometeorites, will not be considered by 
us. 
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6. Meteorites. This class of bodies does not have a sharp boundary with the preceding 
c lass ,  since the path of a meteoric body, in other words, the possibility of reaching the earth's 
surface, depends not only on the initial m a s s ,  but a l so  on the velocity. We shall assume condi- 
tionally that the m a s s e s  of meteorites range from 1 g to lo' tons (1 to loi3 g).' Their velocities 
upon entry into the.tenestria1 atmosphere have the s a m e  limits as in the case of meteors: 11-72 
km/sec. 

From an examination of Figure 1 it  is clear that the domain of meteorites on the mass-  
velocity diagram does not overlap, but merely touches the domain of meteors on the s ide of lesser  
masses, and on the s ide  of lesser  velocities does not overlap, but merely touches the domains of 
space rockets artificial satel l i tes  and aerodynamic experiments. 

This in the final count defines the qualitative distinction between phenomena accompanying 
the movement of large meteorite-forming m a s s e s  in the atmosphere and phenomena studied, on the 
one hand, by meteor physics and, on the other hand, by hypersonic aerodynamics in i t s  c lass ical  
form (i.e., with account not taken of nonequilibrium phenomena). 

It must a lso be noted here that besides the two selected criteria1 parameters (mass and veloc- 
ity), it is necessary to take into account a third-the density of the gas  through which the body 
moves. The influence of density will be considered in Section 3. 

Now let us consider not the formal, but the physical differences between the movement in the 
atmosphere of meteorite-forming masses (which we shal l ,  for the sake of brevity, simply call mete- 
orites) and the movement of other c lasses  of bodies, the domains of which touch the domain of 
meteorites. 

As is known, during the movement of a meteor in the upper strata of the atmosphere, a cush- 
ion of compressed air is formed in front of the meteor body. This phenomenon is connected with 
the fact that oncoming molecules of air, in bouncing away from the body, encounter new oncoming 
molecules, etc. In the movement of a meteorite it is not a cushion that is formed, but a shock 
wave. This difference is connected with the difference in flow conditions and will receive de- 
tailed consideration in Section 3. 

When rockets, m i s s i l e s  and supersonic aircraft move in the atmosphere, as well as in aero- 
dynamic experiments, shock waves are a lso formed. The basic distinction of shock waves formed 

'It should be noted for the sake of definiteness that here we have in mind neither the initial nor 
the terminal masses of the meteorites, but the entire range of masses, i.e., from the very greatest 
initial masses to the very smallest masses corresponding to  meteorites falling on the surface of 
the earth. Nevertheless the lower limit is conditional. 
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by meteorites lies in the fact that these waves are strong ones, the temperatures a t  the front of 
the shock wave attain tens and hundreds of thousands of degrees, and behind the front of the wave 
there takes place not only molecule dissociation, but a lso atom ionization which, as a rule, is 
multiple. As a result, behind the front there is formed a nonequilibrium region where the air loses  
the properties of plasma, and the ensuing, recombining radiation exerts a substantial influence on 
the structure of the wave.' 

From this point of view, the closest  analogy can be found in the case of shock waves origi- 
nating as a result of powerful explosions (including atomic explosions). However, the structure of 
the shock wave of a flying meteorite differs from the structures of an explosion wave, and the 
phenomena originating during i ts  flight-heating, ablation, deceleration-have so far been studied 
only for lower speeds where the nonequilibrium phenomena enumerated above originate very seldom. 

The basic problem of the physical theory of the movement of meteorites in the atmosphere 
may be formulated in a manner similar to that used for the basic problem of the theory of meteors, 
as a determination of the laws of change of the velocity and m a s s  of a meteoric body in i ts  move- 
ment through the atmosphere. The path toward a solution of this problem lies,  in our opinion, in a 
manifold study of the properties of a strong shock wave and the interaction of the shock wave with 
the meteor body. 

In this book we shal l  try to develop the overall pattern of the phenomena that determine the 
interaction of the shock wave with the meteor body, devoting our main attention to the processes 
of ionization and recombination behind the front of the shock wave, on the temperature distinction 
behind the front, and on determination of the flow of radiation obtained by the body from the shock 
wave. In concluding the book, we shal l  attempt to sketch out problems and to  present a program 
of further research in this field. 

Section 2. Application of the Physical Theory of Meteors 

The fullest exposition of the physical theory of meteors and a survey of the works in this 
field published to 1956 is contained in the monograph of B. Yu. Levin (Ref. 1). 

Considering the movement of a mete'oric body with respect to the molecules of air, we can 
assume that the meteoric body is decelerated by the impulse transmitted by counterblows of the 

lIn the range of densities and temperatures studied by us ,  plasma may, generally speaking, be re- 
garded as an ideal gas, but only when an  equilibrium state  has been attained. In the case a t  
hand this condition is not always fulfilled. 

, 

i 

_ .  

I 
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molecules, while heating and loss  of m a s s  of the body as a result of melting or evaporation take 
place because of transmission to the body of the energy of the oncoming air molecules. From 
these considerations are derived the basic equations of the physical theory of meteors, which 
have the following form: 

dv h!l dt = - I’Spv2 

(deceleration equation), 

(equation of m a s s  loss) ,  

where M is the mass, v is the velocity, S is the area of the midsection of the meteorite; r and A 
are the coefficients of resistance and heat transfer; p is the density of air; and Q is the energy 
expended for the removal (ablation) of a unit m a s s  (into this enters the expenditure of heat for 
warming the mass, and i t s  evaporation or melting; equation (2.2) does not take into account the 
heating of the body in depth). 

Coefficients and A depend on the nature of the process of the transmission of the impulse 
and energy by the air molecules in the meteor body, and are, generalIy speaking, variables. But 
s ince the range of their variation is not large, they are  usually assumed to  be constant in the first 
approximation. 

It is obvious that the heat transfer coefficient A < 1, since only part of the energy of the on- 
coming air molecules is expended for removal of m a s s  (ablation) from the meteorite. The corre- 
sponding portion of the energy is expressed in terms of the coefficient of accommodation a,  which 
for iron and stone meteorites is from 0.75 to 1. Besides, air molecules flying off the body after 
collisions, and then, a l so  evaporating molecules from the meteoric body, bring about an  enclosure 
effect which reduces the quantity of molecules reaching the body’s surface and transferring im- 
pulse and heat to it. This  effect is expressed by the coefficient of thermal enclosure a h  and the 
coefficient of deceleration enclosure ar. Thus A = aah. 

Regarding the deceleration coefficient r, it may be either larger or smaller than unity, de- 
pending on the shape and dimensions of the body, the conditions of flow about i t  by the oncoming 
airstream, and the presence of a reactive impulse of the rebounding molecules. 

V. G. Fesenkov (Ref. 2) has  taken into account that the diminution of meteorite m a s s  
smoothly ceases when the velocity approaches a certain value vm, and has  supplemented equation 
(2) by the multiplier (vz - v&)/vz: 
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Dividing (2.2) and (2.3) by (2.1) and integrating, we obtain solutions of the mass  loss  equa- 
tion for the cases of v, = 0 and v, > 0, respectively: 

The subscript 0 signifies the initial values of mass and velocity, and the letter e denotes 
the value 

Parameter e may be found from observations if the velocity and acceleration of the meteor 
are measured, and the brightness curve E(t) of the meteor is obtained. Then, assuming the bright- 
ness  E(t) to be proportional t o  the m a s s  loss of the meteor body and to the square of the velocity, 
i t  is possible to determine (dM/dt), for the moment t, on the basis  of E(t,), and then from equa- 
tions (2.1), (2.2) and (2.4), to determine the value e. It stands to reason that l? and II are here as- 
sumed constant.' The formula for determining cr has the form: 

where r is the coefficient of luminosity transmission, usually assumed proportional to the velocity: 
r = r0v (then in the denominator v 3  stands everywhere in place of m'). 

We introduce the designations: 

'Considerable complexity is introduced into this question when consideration is given to the dis- 
integration of meteoric bodies, in which case both deceleration and m a s s  loss  are sharply intensi- 
fied. In addition, whereas photometric determination of E(t)  yields the total m a s s  of the frag- 
ments, the value of deceleration corresponds to the average m a s s  of one fragment. Therefore, 
lack of knowledge of the law of disintegration can distort the results for e. 



Substituting them into formula (2.5), we reduce it to  the form of 

The law of thechange of velocity with altitude may be obtained by integrating equation (2.1) 
along the path of the meteorite. Assuming S/S, = (M/M,)2'3, and bearing in mind that 

where H is the altitude and i is the angle of inclination of the meteorite trajectory to the vertical, 
after substituting (2.9) into (2.1) and integrating, we obtain: 

(2.10) 

Assuming the distribution of air density to be according to the barometric formula p = 

poe-H'H', where H* is the altitude of a homogeneous atmosphere, and introducing a coefficient of 
the form A = S,,/Mp, we reduce expression (2.10) to the form of 

whence, taking account of (2.9), 

(2.11) 

(2.12) 

where K denotes a constant multiplier in  the right-hand part of (2.11). Then for a given m a s s  ratio 
M/M, and velocity ratio v/v,, i t  is possible to find a corresponding altitude: 

The integral, which enters into the left-hand part of formula (2.10), is equal to  

I=e-uo [Ei(u,) - Ei(u)], 

(2.13) 

(2.14) 

where Ei(u) is an integral index function. Thus, 
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H = - F H ’ n -  I 
KUUm 

(2.15) 

At the moment the meteorite reaches the earth‘s surface, H = 0, and the condition 

I = KUUm (2.16) 

will be fulfilled. 

Given some most probable values of the parameters (T, r, A, as well as of the angle i, and 
assuming specific initial values of M,, v,, i t  is possible on the basis  of formulas (2.16) and (2.14) 
to find the terminal velocity, vk, of the meteorite, and then according to formula (2.9), the terminal 
mass, Mk. The multiplier UUm is usually c lose to unity, s ince u, << 1. Therefore, assuming with 
V. G. Fesenkov that v, = 1 km/sec, we obtain u, = 0.002; i f ,  on the other hand, we take the est i -  
mate of Ceplecha (Ref. 3), based on observations of the flight of Pribram meteorite, v, = 7 km/ 
sec ,  we shal l  nevertheless have u, = 0.08. For meteorites undergoing considerable deceleration 
in the atmosphere, the multiplier UUm should be taken into account. 

Some authors have made attempts to investigate the movement of meteors in the atmosphere 
on the basis  of the stated physical theory of meteors. Thus, in 1951, Thomas and Whipple (Ref. 4) 
carried out an  investigation of the probable conditions of the fall of the meteorite. Judging by the 
small dimensions of the crater formed by this meteorite in landing (in which i t  st i l l  l ies),  the 
geocentric velocity of the Gobi meteorite was minimal; this was taken into account. In spi te  of 
the introduction of some concepts from aerodynamics and heat-exchange theory, Thomas and 
Whipple based their calculations on the use of equations (2.1) and (2.2), assuming that r = 0.5, 
and taking the value of (T from the work of Jacchia (Ref. 5), which contained 55 determinations of 
this value for 36 bright meteors. In some variants of the solution, they adopted the mean value of 
log (T (logmean (T = - 11.75), and in other variants they adopted i t s  maximum value (logmax (T = 

- 11.28). 

The method described above was used in 1951 by V. G. Fesenkov (Ref. 2) for studying the 
movement of the Sikhote-Alinskiy meteorite, and in 1960 by V. A. Bronshten for ascertaining the 
probable conditions of the fall of the Tungusskiy and the Kaaliyarvskiy meteorites (Refs. 6, 7). 

Here, different values of initial masses, differing by one order of magnitude, were selected, 
and solutions were obtained for a considerable range of initial velocities. The results (terminal 
masses, velocities and kinetic energies of fall) were compared with estimates of the energy of 
destruction taking place on the site as a result of the fall. On the basis  of these rather approxi- 
mate comparisons, it was nevertheless possible to  estimate the probable valiles of the initial 
masses with an  accuracy of up to 33 percent, and the values of the initial velocities with an  
accuracy of up to 50 percent. 
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Much indeterminacy is introduced into these estimates through lack of knowledge of the pre- 
cise values of the parameters and A were as- 
sumed constant. Nevertheless, the assumption concerning the constancy of r and A is not justi- 
fied, since r apparently depends on the shape, and particularly, on the velocity of the meteor 
body, while A depends on the predominance of one process or another of heat exchange and the 
removal of the m a s s  of the meteorite (ablation). Moreover, substantial differences of opinion exis t  
among various authors concerning the evaluation of these coefficients. 

and A (or of 0). In most of the investigations, 

Baker (Ref. 8), on the basis  of the experimental data of Hodges, Jensen, and others, assumes 
that for large meteorite bodies moving under conditions of continuous flow (see Section 3), r = 

0.46. A value of 
Levin (Ref. l), considering i t  to be most probable for large meteoric bodies. The lower limit of r, 
according to  Thomas and Whipple is equal to 0.2-0.3, and the upper limit is 1. B. Yu. Levin 
allows for the possibility that in the case of very s m a l l  bodies and with intensive evaporation 
r > 1 (due to the reactive action of the evaporating molecules of the meteoric body). 

c lose to  0.5 is adopted by Thomas and Whipple (Ref. 4), as well as by B. Yu. 

In 1950, K. P. Stanyukovich (Ref. 9), investigating the movement of small meteoric bodies at 
altitudes in excess  of 80 km, used the formula of the aerodynamic coefficient of resistance 

(2.17) 

where y is the indicator of the adiabatic air curve. For high altitudes, where the free-path length, 
1, of molecules, is large in comparison to the dimension D of the meteoric body, and their impacts 
are nonelastic, K. P. Stanyukovich assumes that y = 5/4, and, consequently, that cx = 2.1, 
1.05 (it is usually assumed in aerodynamics that cx = 2). For lower altitudes, where 1 << D, and a 
shock wave is formed in front of the flying meteoric body, K. P. Stanyukovich assumes y = 6/5, 
from which is obtained cx = 1.87 and r = 0.94. 

= 

On the basis of the s a m e  aerodynamics formula (2.17), which expresses the deceleration 
pressure on a smooth sphere at  supersonic velocities, V. G. Fesenkov (Ref. 2), assuming y = 7/5, 
obtained' r = 1.3. Subsequently, in calculating the movement of the Sikhote-Alinskiy meteorite, 
he used various values of I?, 0.5, 1 and 2, giving preference to the latter value. "For a body of 
irregular shape and, particularly, one producing, due to the speed of its movement, intensive 
vortex nuclei in i ts  immediate vicinity which are transported with it and considerably increasing 
the s i ze  of the effective cross  section, the coefficient should s t i l l  increase considerably, but 
may under no circumstances diminish" (in comparison to = 1.3), states  V.,G. Fesenkov. 

'As we shall  see in Section 7, Table 5, the estimates of the isentropic exponent y,  adopted by 
K. P. Stanyukovich, are closer t o  actuality than is the estimate of V. G. Fesenkov, although in 
the general case this value depends on the velocity of the meteorite (via the temperature in the 
shock wave). 
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In 1960, K. P. Stanyukovich (Ref. lo) ,  as a result of investigating the effect of the reactive 
impulse of evaporated and escaping molecules, obtained a formula of the form 

(2.18) 

where v, and v, are the velocities of i t s  escaping and evaporated molecules; and n is a coefficient 
depending upon the shape of the meteorite (for a sphere, x = 0.5). Application of formula (2.18) 
yielded 1.8 < r < 2.5 for the basic range of meteoric velocities. 

G. I. Pokrovskiy (Ref. l l ) ,  in summarizing the results of experiments with cumulative 
charges-with the action of rapidly expanding (several km/sec) plasma of electrical discharge onto 
ballistic pendulums, as well as meteoric data-came to  the conclusion that within the range of 
Mach 3 to Mach 10, cx diminishes as the Mach number increases, and may be considered to  be 
approximately inversely proportional to the velocity. Furthermore, when Ma > 10, cx on the con- 
trary grows with an  increase in Ma, and is approximately in proportion to the velocity; i t  attains 
values of the order of 10 (i.e., r = 5). 

The only determination of r from observations of the bolide which terminated in the falling 
of the Pribram meteorite was made by Ceplecha (Ref. 3). This bolide was photographed by 
meteor patrols from two Czechoslovak stations, and the photographs were processed in detail. 
The trajectories of various parts of the bolide (which broke up in the air) were identified from 
fallen fragments of the meteorite. The final masses of the fragments, as well as the density and 
composition of the meteorite, were known, thereby facilitating the investigation. A s  a result, 
r = 0.43 was obtained (for velocities of 1 to 7 km/sec), which is in good agreement with the ex- 
perimental data of Baker, as well as with that of Thomas and Whipple for this velocity range. 

The values of r for greater velocities were then obtained by another method, i.e.,  from a 
comparison of the altitude of burnout and the length of the last  (“dark“) section of the trajectory. 
For various pieces of the meteorite (0.1-4.5 kg in mass), = 0.55-1.20 were found. 

In a somewhat better position is the question of estimating the value o; this value, as has  
been stated above, may be found from photographs on the basis  of the curve-of-brightness change 
and the velocity of the meteor along i ts  path, according to  formula (2.7). 

By such a method Jacchia (Ref. 12) obtained over 1,000 determinations of (T for 438 meteors. 
Individual values are not presented in that work; rather, the mean group values are listed for 8 
groups corresponding to  various ranges of velocity o, and for 11 groups corresponding to various 
intervals of the logarithm of integral brightness E,. The mean group values of (T for the various 
velocities (expressed in terms of g/erg) lie within the limits &f 
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2 - 10-12 < u < 10-11. 

In earlier works of Jacchia (Ref. 5), on the basis of 36 photographs, 55 values of u were ob- 
tained which lay within the limits of 

5 . 10-13 < < 4 . 10-l~. 

Some of the divergence between these domains of the values of u are to  be explained first of 
all  by the fact that in Ref. 12, 355 of the 438 meteors were photographed by powerful high-speed 
Super-Schmidt cameras and, with the exception of 3 of these meteors, have E, < 10 (the bright- 
ness  of a star of zero magnitude was adopted as a unit of E,). The remaining 83 meteorites were 
photographed by s m a l l  cameras with a wider field of vision; therefore, in their case the probability 
that bright meteors will get into the photograph is greater, and for them 10 < E, < 1,000. In Ref. 5 
only photographs taken with s m a l l  cameras were used, and consequently, this material pertains to 
brighter meteors. Furthermore, as has  already been stated, according to Ref. 12 the limits for u 
pertain to mean group values, and the scattering of individual values should be greater. The fol- 
lowing values of u were obtained by Jacchia (n is the number of meteors). 

log u = - 11.22 
log (T = - 11.41 
log 0 = - 11.75 

([121, n = 355, Super-Schmidts) 
([12], n = 83, s m a l l  cameras) 
([ 51, n = 36, small cameras) 

In Ref. 12 the dependence of u on E, was traced, and a distribution of u with a transition to 
brighter (i.e., more massive) meteors was discovered. 

On the basis of processing photographs of the bolide of the Pribram meteorite (Ref. 3), 
Ceplecha obtained for the velocity range v 5 20 km/sec, a variable u, increasing with velocity: 

v, km/sec . . . . . . . . . .  7 10 14 17 20 
u . 10l2 . . . . . . . . . . . .  0.2 0.4 0.6 0.8 0.9 

The order of magnitude of the u obtained by Ceplecha fi ts  into the range of values found in 
the early work of Jacchia for bright meteors (Ref. 5). 

This data provided a basis  for V. A. Bronshten, in his investigation of the movement of the 
Tungusskiy and Kaaliyarvskiy meteorites (Refs. 6, 7) in the atmosphere, t o  assume that (T = lo-”. 
In Ref. 6 he investigated the influence of the estimates of parameters r and u on the terminal 
meteorite m a s s e s  and on the velocities which were obtained in the calculations, as well as the in- 
fluence of on the deceleration process. 

The results of this investigation are reduced to  the following: The course of deceleration 
and of the distribution of m a s s  with altitude a t  given M, and r is determined only by the product 
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mi and, consequently, depends on the parameter u. Variation of this value leads to  the fact that 
all of the velocities obtained in the calculation change in inverse proportion to I,/= where 
0, = lo-''. Estimates of and of the initial m a s s  M, determine the zero point on the altitude 
scale; in other words, the deceleration and mass-loss curves will be shifted upward or downward 
without changing their form.' Moreover, since and M, enter into formulas (2.10) and (2.15) in 
the combination rM,"3, doubling the estimate of r (or more precisely, increasing i t  by a factor of 
2.16) is equivalent to diminishing the estimate of the initial m a s s  M, by one order of magnitude. 
Physically this signifies that a small m a s s  of "streamline" shape, with a s m a l l  I?, is decelerated 
in the same manner as a large m a s s  of irregular shape with a large r. Adoption of one estimate or 
the other of r will exert considerable influence on the terminal m a s s  Mk of the meteorite, and s t i l l  
greater influence on its terminal velocity, vk. Doubling of r a t  high velocities may reduce Mk and 
V k  by an order of magnitude and more. 

, 

Variation of the coefficient of heat transfer A (at constant I?) is equivalent to variation of u, 
since A = 2 r Q u  = 0.16 
dozens of centimeters in s ize ,  5 0.05. At the s a m e  time Ceplecha (Ref. 13) obtained the result 
that, for the Pribram meteorite a t  the terminal sector of the paths, A diminished with the velocity 
(from 0.068 a t  v = 20 km/sec to 0.025 a t  v = 10 km/sec). 

10" ur. As B. Yu. Levin (Ref. 1) s ta tes ,  in the case of large bodies 

At a constant u = lo-", A = 0.08, 0.16, 0.32 correspond to r = 0.5, 1 and 2. 

Unfortunately, meteor physics cannot provide sufficiently reliable estimates of the highly 
important parameters 
observation material pertain to meteors, i .e.,  to bodies of smaller m a s s ,  and a rather scant body of 
experimental material pertains to considerably lower velocities in comparison to meteorites. 

and A for studying the movement of meteorites, since the theory and the 

The work of Ceplecha is as yet the only of i t s  kind, and i t  is scarcely possible to expect 
that i t  will again be possible to photograph a meteorite in flight from two stations by special 
meteor patrols. Therefore, basic efforts must be directed a t  creating a theory of the movement of 
meteorites in the atmosphere, as well as the carrying out of experimental operations. 

Section 3. Flow Conditions 

A large (meteorite-forming) meteoric body (which we shall ,  as before, for brevity cal l  simply 
a meteorite), moves in the atmosphere under different conditions than does the conventional 

'This is because not only the density of air, but a lso the relative m a s s  and velocity of the mete- 
orite change with altitude according to  an exponential law, and follow directly from formula 
(2.15). 
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meteoric body engendering the appearance of a meteor. In the movement of a body a t  hypersonic 
velocity in a medium (in the case a t  hand, in air), various conditions of flow about the body of the 
head-on current a re  possible. 

In 1946, Tsien (Ref. 14) introduced the modern classification of hypersonic flow conditions 
that are  cited in many works, particularly by Baker (Ref. 8) and V. A. Bronshten (Ref. 6). Often 
introduced as a parameter is the so-called Knudsen Number K, equal to the ratio of the free-path 
length 1, of the stream to the characteristic dimension of the body D. Specifically, in the case of 
a meteorite we are  dealing with the mean free-path length of evaporated molecules 1, in relation to  
the head-on molecule of air. Thus 

4 I< = - D '  

Another parameter determining the flow conditions is a combination of the Mach number (Ma) 
with the Reynolds number (Re): Ma/Re or Ma/- These values are connected with each other 
by the following relationships: 

where ve is the mean velocity of evaporated molecules and c is the speed of sound. 

Very frequently the thickness 6 of the boundary layer is used in place of D a s  the character- 
ist ic dimension. At small Reynolds numbers (Re << l), D/6 = 1 and, consequently, 

I I Ala 
D -  6 - R e '  
_-_-- 

For the contrary case (Re >> 1) the relationships 

(3.3) 

are in force. 

In Tsien's classification, the following basic conditions of flow about a body by a hyper- 
sonic gas  s t ream are  to be distinguished: 

1) conditions of free molecular flow, when the body undergoes the impacts of individual 
molecules, but the collisions of these molecules with one another may be disregarded; 

! 
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2) transient conditions, when the free-path length is comparable to the dimensions of the 
body, and collisions of molecules with one another may be taken into account; 

3) conditions of flow with sl ip,  when the tangential component of the stream velocity a t  
the surface of the body is small, but finite (gas does not adhere to the wall of the body); 

4) conditions of continuous flow, when s l ip  is absent and the gas may be regarded as a 
solid medium. 

Table 1 presents the conditions characterizing each of the flow regimes. 

It stands to  reason that these boundaries ace conditional, and various authors give various 
values for them. Therefore, according to  Schaaf (Ref. 15), the boundaries of regimes I1 and I11 
correspond to  Ka = lo-', and those of regimes I11 and IV to Kg = lo-'. Baker (Ref. 8) and V. A. 
Bronshten (Refs. 6, 16) correspondingly adopted lo-' and 

Table 1 
Boundaries of Flow Regimes (according to Tsien) 

K = l/D gimes Re- I 
I I K>10 

IT 1 i/v&< K<10 

IT1 10-2/6&<K 
K <I/V% 

IV 1 K<lO-a/)/E K,<lO-a 1 - 1 <IO+ 

A detailed examination of the classification of the flow regimes and of the conditions of the 
application to them of various equations of gasdynamics is contained in Refs. 17-19, as well as 
in the monograph of Hayes and Probstein (Ref. 20). 

If in the oncoming stream the concentration of molecules is no, and the effective cross sec- 
tion of a molecule is vo', the frequency of their collisions with evaporating molecules of the body 
will be equal (per 1 molecule) to 

and the free-path length of evaporating molecules with respect t o  that of the oncoming ones will 
be equal to 



and furthermore 

while the free-path length of molecules of the oncoming stream with respect to one another is 

On the basis of (3.6), (3.7) and (3.8) 

Replacing v = c . Ma and bearing in mind the expression for the velocity of sound 

w e  finally obtain 

1, = __ 4 ( Tevap T)"'& . 
V Z  

Since fi= 2, TeVap/T = 10, the approximate relationship 

6 3  
Ma I ,  - l o .  

(3.10) 

(3.11) 

(3.12) 

holds true. Hence 1,/D > 1.6 Ma corresponds to  the condition 1,/D > 10, and analogously for the 
other conditions characterizing the flow boundaries cited in Table 1. 

Thus, the mean free-path length of molecules 1, entering into the Knudsen Number, must not 
be taken for a free stream, but rather for a boundary layer, i.e., the free-path length of evaporated 
molecules a t  an  evaporation temperature of Tevap. Since when Tevap = 3,000°K V e / C  = 5, it may 
also be approximately assumed, on the basis of (3.2), that 
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5 
Re ' I C s  - (3.13) 

Figure 2 shows Reynolds numbers for the case of the motion of a body with a diameter of 1 
c m  at velocities of 10-70 km/sec to an altitude of 120 km. Since the Reynolds number is propor- 
tional to the diameter of the body, i t  is possible from Figure 2 to find Re for other values of D as 
well. In order to present a more graphic presentation, Figure 3 shows a family of lines of equal 
Re  in  the function of altitudes above sea level and the diameter of the body (up to D = lo4 cm) for 
v = 20 and 60 km/sec. In Figure 3 are a lso marked off the boundaries of the basic flow regimes. 

As may be seen from Figure 3, a meteoric body with a diameter of 10 cm, at  a lower altitude 
than 80 km, is moving already under conditions of continuous flow, and for larger bodies these 
conditions start  a t  an even higher altitude. On the other hand, the flight of ordinary meteors with 
a m a s s  of M < lg takes place under conditions of flow with sl ip.  Therefore, it is not proper to 
transfer rules established for ordinary meteors to the flight of large meteorites in the atmosphere. 

K K M  
Reynolds numbers (D = 1 c m )  

,/- 

IO 2ol 0 m61: IO 20 10 YO 513 60 IO 

v, km/sec 

Figure 2. Reynolds numbers in the function H, v (D = 1 cm). 
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To the study of the movement of meteorite-forming bodies in the atmosphere, it i s  necessary 
to apply the equations of hypersonic aerodynamics and those of the theory of heat exchange during 
flight at hypersonic velocities. 
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CHAPTER 1. MOVEMENT OF A METEORITE 
UNDER CONDITIONS OF CONTINUOUS FLOW 

Section 4. The Formation of a Shock Wave 

It is known that when a large body moves in a continuum a t  a hypersonic velocity, a detached 
shock wave is formed. Since meteorites move a t  velocities many t i m e s  exceeding that of sound 
(Mach 30-200), the shock wave accompanying the meteorite will be a strong one. Therefore, in 
studying the movement of large meteorites i t  is necessary not only to make use of the develop- 
ments of hypersonic aerodynamics, but a l so  to  use the theory of strong shock waves. 

In the past 10 years hypersonic aerodynamics has  undergone extensive development in numer- 
ous research projects in the USSR and abroad. A summary of the basic results of foreign research 
is contained in the thorough surveys of Karman (Ref. 21), Lees (Ref. 22), Ferri (Ref. 23), Patterson 
(Ref. 24), and others (translated into Russian), as well as in the monograph of Hayes and Probstein 
(Ref. 20). The most important results of research on gas  s t reams with a high supersonic velocity 
in the USSR are summarized in the monograph of G. G. Chernyy (Ref. 25). 

However, the overwhelming majority of the works that have appeared in this field in recent 
years are directed toward the study of movement a t  velocities not in excess  of the second cosmic 
velocity (11 km/sec); this determines the formulation of the question. Air is usually regarded as 
an ideal gas,  or else some deviations of the properties of air from the properties of an ideal gas  
are investigated, such a s ,  for example, those connected with dissociation. The influence of 
ionization, which s e t s  in only a t  very high velocities, is as a rule not considered. 

The formation of shock waves in the flight of meteorites has been dealt with in the USSR by 
K. P. Stanyukovich (Refs. 9, 26) and 0. V. Dobrovol'skiy (Ref. 27). In Ref. 9 some general for- 
mulas were given which determine the pressure density and the temperature behind the front of the 
wave and on the surface of the meteorite body; and, the influence of the shock wave on the evapo- 
ration of the body was briefly treated. Ref. 26 dealt with the effect of the ballistic wave of the 
flying meteorite, and of the blast wave formed when the meteorite strikes the surface of the earth 
or terrestrial objects, as well as the mutual interaction of these two waves. 0. V. Dobrovol'skiy 
(Ref. 27) attempted to  take into account the influence of the evaporation of the meteorite body 



21 

upon the shock wave, considering that the evaporation process is of so intensive a nature that it 
may be compared with a blast  process continually developing along the trajectory of the meteorite 
(as in a blasting fuse). The “blast” wave brought about by the rapid evaporation of the meteoric 
body is, in the opinion of 0. V. Dobrovol‘skiy, stronger than the ballistic shock wave. 

We cannot agree with the interpretation of 0. V. Dobrovol‘skiy, since the expenditure of 
energy on the evaporation of a meteor body comprises but some fraction of the total energy of the 
shock wave, and the evaporation process itself is brought about by heating of the meteoric body 
by the shock wave. Thus, these can be merely some redistribution of energy, and not a summation 
of the energy of two waves. 

In all of the enumerated works, the physics of the phenomena taking place in the shock wave 
of the flying meteorite is scarcely considered. The most complete investigation of the interaction 
of a shock wave and a meteoric body, with account taken of dissociation, ionization and radiation, 
w a s  made in 1960 by K. P. Stanyukovich and V. P. Shalimov (Ref. 28). In their work the solution 
of the deceleration equation and of the m a s s  loss  of the meteorite under conditions of intense 
evaporation is given; the question of the heating of the meteoric body and of the so-called “ther- 
mal  explosion” is considered. An analysis of some of the results of this work will be presented 
in Section 17. 

For the moment let  us consider qualitatively the pattern of the formation of a shock wave, 
considering the meteorite to be stationary and assuming the counterstream of air to be coming at  
it (Figure 4). The following basic elements of a shock wave may be distinguished (Ref. 29). 

1. The front of the shock wave (the shock front) is a comparatively thin layer within which 
occurs a sharp change in  the thermodynamic values (temperature, pressure and density) and trans- 
fer of the energy t o  the forward motion of air molecules to the energy of excitation of internal de- 
grees of freedom: rotational and vibrational energy of molecules, chemical energy (including dis- 
sociation energy), the energy of electronic excitation and ionization. 

Two layers may be distinguished in the shock front in a viscous compression wave in 
which the directed motion of the molecules of the stream is transformed into random motion and 
shock compression is effectuated, and a relaxation layer in which excitation of the intrinsic 
energy of the particles takes place. 

2. The compressed layer 2 is the region of compressed gas behind the front of the shock 
wave, which on first approximation is in a s ta te  of equilibrium. However, this equilibrium is dis- 
rupted at high altitudes because of the relatively large relaxation times (for the .establishment of 
an equilibrium state) for the basic reactions. In addition, the thickness of the shock front and of 
the boundary layer increases a t  high altitudes. 
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1 2 3  4 5 

Figure 4. Diagram of the basic elements of a shock wave. 

1 - front; 2 - compressed layer; 3 - boundary layer; 
4 - stagnation zone; 5 - trail 

3. The boundary layer 3 is a thin viscous layer, adhering to the body, in which the tangen- 
tial component of velocity falls from the local value in the compressed layer of gas to zero on the 
surface of the body (on the wall). In the boundary layer there takes place an interaction of the 
evaporated molecules of the body with the atoms and ions of the oncoming stream and equalization 
of the temperatures of the gas  and of the body. Therefore, strictly speaking, one should distin- 
guish an aerodynamic and a thermal boundary layer. 

4. The stagnation zone 4 is the region immediately behind the body; in the ideal case it  
constitutes a vacuum, while in the actual case this zone is filled with evaporating molecules of 
the body, as well as with molecules present as a result of flow stal l  from inhomogeneities and 
projections on the body, rotation of the body and other causes.  

5. The trail 5 is the region of high-temperature turbulent flow with low density behind the 
body. The trail is formed as a result of diffusion expansion of the streams flowing about the body 
inwards, and the "convergence" of the flow of the m a s s e s  of gas a t  some distance behind the 
body. For meteoric bodies this distance exceeds the dimensions of the body by approximately one 
order of magnitude. 

Section 5. Shape of the Shock Wave and the Flow Field 

W e  are first of all interested by the question of the geometrical parameters of the shock 
wave, i t s  shape and the value of i ts  detachment, as well as by the flow fields behind the wave 
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front. Unfortunately, an  analytical solution of this problem in general form does not as yet exist ,  
and the shape of the shock wave is determined by numerical methods. 

Even considering only the value of the detachment of the shock wave (the width of the com- 
pressed layer) 6,, in the determination of this value either approximate formulas or numerical 
methods of solution are used. Thus, with a hemispherical nose in the first approximation 
(Ref. 22): 

where R, is the radius of the sphere, 77 = pI/p2, p1 and p 2  constitute the air density before and be- 
hind the front of the shock wave. In the second approximation Hayes (Ref. 34) obtained 

The monograph of Hayes and Probstein (Ref. 20) also cites the following expression for the 
ratio of 6, to the radius of the shock wave on the axis  R, of the body ' 

which, since 6, = R, - R,, is reduced to the form of 

We compare the results yielded by these formulas with the precise solution obtained by 
0. M. Belotserkovskiy (Ref. 37); we assume here that 77 = 1/6, Ma =.m: 

Formula (5.1). . . . . . . . .  .6,/R, = 0.167, 
Formula (5.2). . . . . . . . . .  6,/Ro = 0.106, 
Formula (5p ) .  . . . . . . . . .  &/R0 = 0.1.11, 

Precise  Solution. ........ .6,/R, = 0.128. 

(5.3) 

A detailed survey of this question may be found in Refs. 20 and 22. Consideration is also 
given to analogous expressions for blunt bodies of various shapes. Frequently, instead of solving 
the direct problem of the shape of the shock wave for a body of a given shape, the converse 
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problem was solved, i.e., the shape of the shock wave was given and the body parameters corre- 
sponding to i t  were computed (Ref. 20). 

A method of precise solution of the direct problem was proposed in 1956 by A. A. Dorodnitsyn 
(Ref. 35) and was worked out in  detail by 0. M. Belotserkovskiy (Ref. 36). This is the method of 
integral relationships, which is explained in the following manner. Flow about an axially sym- 
metric body by an  oncoming stream is described in spherical coordinates by a system of differen- 
tial equations in terms of partial derivatives equivalent to  the equations of motion, continuity and 
energy. The origin of the coordinates is taken to  be in the center of curvature of the nose part of 
the body, and between the body and the wave these are drawn N-1 lines equidistant along the 
radius, dividing the area of integration into N strips. 

The initial equations are  integrated along the radii from the contour of the body to the boun- 
daries of the strips, as a result of which 2 N independent integral relationships are obtained. 
Approximating the integrals by interpolational polynomials and integrating, we obtain an approxi- 
mating system consisting of 3 N conventional differential equations and N-1 final relationships. 

In the first approximation (N = l), integration is carried on from the boundary of the body all 
the way to the boundary of the wave. In the second approximation (N =' 2) one additional line is 
introduced, etc. Investigation of the question and comparison with experimental data (Ref. 36) 
has shown that the second approximation is entirely sufficient. In such a case it is necessary to  
solve a system of 6 conventional differential equations and one final relationship. Computation 
formulas for this case have been derived by 0. M. Beltoserskovskiy (Ref. 37). In the s a m e  work 
are given tables of the parameters of the shock wave, determining i ts  shape, the stream function, 
the distribution of pressure on the body, as well as tables of the flow fields for flow about spheres 
and ellipsoids of revolution with semiaxis ratios of 1:2 and 32 ,  a t  Mach numbers of Ma = 3, 4, 6, 
10 and M (the limiting case). 

In the Computer Center of the Academy of Sciences, USSR, for the calculation of plane and 
axially symmetric flows of gas ,  intensive use is a lso  made of the method of characteristics, per- 
fected and adapted to  this purpose by P. I. Chushkin (Ref. 38) and described in detail in Ref. 39. 
This method was used to calculate supersonic flows past blunt-nosed cones, tables for which 
have been published by P. I. Chushkin and N. P. Shulishnina (Ref. 40). In these tables the coor- 
dinates of the shock wave, the distribution of pressure, Mach numbers and the coefficient of wave 
resistance on the surface of blunt-nosed cones are  given. The shape of the blunting is spherical 
or ellipsoidal, with the same semiaxis ratios as in Ref. 37, with half-angles of aperture from 0' 
(blunt cylinder) to 409 The s a m e  Mach numbers were chosen as in Ref. 37. 

In calculating all of the indicated tables, air was considered to be an ideal gas with an 
. isentropic exponent y = 1.40. Besides, 0. M. Belotserkovskiy calculated analogous tables for the 
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values y = 1.15, 1.29 and 1-67, containing the coordinates of the shock wave and the distribution 
of pressure on the body. 

Comparison of these tables shows that as y diminishes, the wave approaches closer t o  the 
body, as is shown in Figure 5. On the basis of Table 5 (Section 7), i t  is possible to conclude 
that in a majority of cases, in the shock waves of meteorites y will lie between the values of 1.15 
and 1.29. 

However, for an  actual case of a flying meteorite, use of the tables on Refs. 37 and 40 en- 
counters the following difficulties: 

1) the meteorite usually has  an  irregular shape, although some meteorites in the process 
of interaction with air acquire an oriented shape, that of a blunt-nosed cone; the haif-angle of 
aperture of such as the Karakol and Zabvod'ye meteorites i s ,  however, very large (-509, and this 
complicates calculations; 

2) the air behind the shock wave of a meteorite, as we have already noted, cannot be con- 
sidered as being an ideal gas ,  and in such a case y is a variable; a way out of this situation can 
be found in using some effective value yeff. 

The complexity of the true shape of the meteorite forces us t o  consider, as a first approxima- 
tion, bodies of an  idealized shape, i.e., spheres, ellipsoids of revolution, blunt-nosed cones and 
cylinders. 

Figure 5. Shape of the shock wave for y = 1.40, 1.29 and 1.15. 
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To solve the problem of the distribution of temperatures in a shock wave, which will be dealt  
with in Chapter 11, i t  will be necessary to  follow through the flow in the shock wave for any not 
very large time scale corresponding to  the movement of particles in the immediate vicinity of the 
body. 

In the tables in Ref. 37, values are  cited which characterize the flow fields behind the front 
of a shock wave. Adopting a spherical system of coordinates (r, e), with the center in the center 
of curvature in the nose part of the body (Figure 6), and taking for each ray 8 = const five points 
corresponding to the values of e= 0 (the body), 0.25, 0.50, 0.75 and 1 (the wave), where 

0. M. Belotserkovskiy ci tes  for each point (e, 8)  the velocity components along r and 8, as well 
as the values of the stream function + determined by the equation 

d+ = pr s in  B(vdr - urd8). (5.6) 

Since the condition 

Figure 6. Basic parameters of a shock wave 

kl 51 0). 
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is satisfied along the flow lines, the function II, is constant along the flow lines. Therefore, on 
the basis of the values of II, it is possible to reestablish the direction of the flow lines,  and on 
the basis of the values of u, v it is possible to reestablish the velocity vectors. 

Section 6. Processes Taking Place Behind the Shock Wave Front 

When molecules intersect the oncoming stream of the front of a shock wave, a gradual redis- 
tribution of energy takes place. The kinetic energy of the forward motion of the molecules of the 
streams (in the system of coordinates connected with the body) is transformed at  first into the 
energy of a disordered forward motion of the molecules (cforw); and subsequently into the energy 
of excitation of internal degrees of freedom of the molecules, rotational motion and atom vibra- 
tions (eext); and, in case of a large amplitude of the shock wave, into dissociation energy (cdis), 

electronic excitation (eel) and, finally, into ionization energy (cion). Thus, the specific intrinsic 
energy i s ,  in the general ca se ,  equal to 

A detailed treatment of these phenomena is contained in the survey of Ya. B. Zel'dovich and 
Yu. P. Rayzer (Ref. 42). Of great importance to  us is that the equilibrium states,  with respect to 
one degree of freedom or another, are not established behind the wave front instantaneously, but 
rather over some period of time (relaxation time). For the establishment of a Maxwell velocity 
distribution several (one to  three) collisions are sufficient, and for the attainment of an equilib- 
rium of rotational motion, five to ten collisions suffice. The number of collisions required for the 
establishment of a vibrational equilibrium depends to  a great extent on temperature; when T = 

3,000°, about lo5 collisions are required, and when T = 5,800°, about 100. The effects of vibra- 
tional and dissociative relaxation have been studied in detail by many authors, both theoretically 
and experimentally. A survey of the research in this field has  been published by S. A. Losev and 
N. K. Osipov (Ref. 43). 

Vibrational relaxation t i m e  zvibr has  been measured in oxygen and in nitrogen a t  the follow- 
ing temperatures (Ref. 43) (the results are reduced t o  p = 1 atm): 

OK sec OK sec 

Oxygen.. ........ 300 3 . lo-' Nitrogen.. ........ 780 2 . low3 
.......... 2,500 5. io-6 t l  ......... .3,ooo 4. 10-5 
......... .io,ooo 2 .  10-7 t l  ......... .5,600 5 . lo-' 

I1 

I t  
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It can be seen  that with an  increase in temperature, rvibr diminishes rapidly. In the case of 
strong shock waves corresponding to  temperatures of lo' t o  10SOK, the fall of 7vibr is retarded, 
but this value remains very s m a l l  (< lo-' sec) ,  and vibrational relaxation need not be taken i.nto 
account. 

The dissociation of oxygen takes place a t  temperatures of 2,500 to 4,000° when p1 = 1 atm, 
atm. For nitrogen the temperature values corresponding to  and at  2,000 to 3,OOOO when p1 = 

the start  and completion of dissociation' amount t o  4,500 t o  9,000° for p1 = 1 atm, and to  3,500 t o  
6,000° for pl  = atm (Ref. 31). 

Dissociative relaxation time rdiS at  T < 6,000°K considerably exceeds rvibr and diminishes 
rapidly as temperature increases. According to the data of Duff and Davidson (Ref. 44), the time 
for the establishment of dissociative equilibrium in the air behind a strong shock wave when 
p1 = 1 mm Hg, and T ,  = 300°K amounts to 

5,000 a .  10-3 
7,000 2 * 10-3 

10,000 6 - lop4 

In waves of large amplitude, dissociation takes place very rapidly (at T = lo5 O several colli- 
sions are sufficient for dissociation), and we may thus regard gas  in the shock wave as being fully 
dissociated and consisting of nitrogen and oxygen atoms (in the smal l  admixtures of argon may be 
disregarded). 

Then the processes of excitation and ionization occur. They are the subject of detailed con- 
sideration in Chapter 11. Here we shall  merely remark that the expenditure of energy for excitation 
in a shock wave is many orders of magnitude lower than for ionization (+I << cion).  This is con- 
nected with the fact that with a Boltzmann distribution in  the temperature range under considera- 
tion, the share of excited atoms is sma l l ;  in addition, ionization takes place starting basically 
with the upper levels (see Section lo), diminishing their population. Therefore, in the presence of 
a high degree of ionization, there will be comparatively few excited atoms in a gas. In this re- 
spect the pattern in a shock wave in air differs radically from the condition in the formative s tages  
of plasma (Ref. 54). 

It would s e e m  that atom collisions should constitute the basic mechanism of the initial stage 
of ionization. However, attempts to provide a quantitative explanation of the initial stage of 

lBy start and completion of dissociation, we conventionally understand to  mean the s ta te  wherein 
the share of the atomic and of the molecular component amounts, respectively, t o  1 percent. 
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ionization on the basis  of the processes of atomic collisions, as well as on the basis of photo- 
ionization, has  as yet not been successful (Ref. 43). It i s ,  however, well known that a t  the ioni- 
zation stage of x = lr3, the basic mechanism leading to  further ionization is already the electron 
impact. We shal l  consider this process in Chapter 11. 

A very substantial property of strong shock waves is the presence of strong radiation, origi- 
nating basically as a result of the processes of electron recombination and deceleration in  an ion 
field. Here, although the density of the radiation energy Up and the radiation pressure Up/3 are 
very smal l  in  comparison to the intrinsic energy and pressure of the substance behind the wave 
front, the s t ream of radiation energy in strong waves is comparable to the stream of energy trans- 
ferred by the substance, and exerts a substantial influence on the structure of the shock wave 
front. 

A rigorous theory of a shock wave, taking radiation into account, was developed by Ya. B. 
Zel'dovich (Ref. 46) and Yu. P. Rayzer (Ref. 47). The results of this research are cited in the 
survey of Ref. 42 and will be used by us further on. 

Refs. 46 and 47 give solutions of the hydrodynamic equations and equations of radiation 
under the assumption of the absence of deexcitation (the radiation flux across the surface of the 
shock wave is equal t o  zero). The works of S. A. Kaplan and I. A. Klimishin (Ref. 33), as well as 
of Kogure and Osaki (Ref. 41), deal with the case of deexcitation (see Section 8). 

The question of the influence of radiation on the structure of a shock wave has  a l so  been 
dealt with in the work of Sen and Guess (Ref. 48); however, they studied shock waves of such 
s m a l l  amplitude (Ma 5 4),  that the influence of radiation in them i s ,  contrary to the opinion of the 
authors, infinitesimal. 

The basic manifestation of the interaction of radiation with the substance in a shock wave is 
expansion of the shock wave front. The same effect, as is clear from the preceding, is exerted by 
the retarded excitation of part of the thermal capacity connected with the finiteness of the relaxa- 
tion times rvibr, Tdis  and qon, the las t  of these having the greatest value. 

Concerning the part played by the other factors in the expansion of the shock front, it should 
be noted that viscosity plays a primary part in the formation of a shock wave. But in the wider 

'The influence of radiation on the structure of the shock wave front has been investigated in de- 
tail by V. A. Prokof'yev (Ref. 45), in whose work are cited the general equations of the motion of 
a material medium with account taken of radiation. However, their solution in Ref. 45, has been 
shown by Ya. B. Zel'dovich (Ref. 46) to be incorrect. 
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\ relaxation layer, where vibration excitation and dissociation take place, the part played by vis- 
cosity and thermal conductivity in. the case of strong waves is insignificant.' 

Thus, a n  involved complex of phenomena, for which experimental and reliable theoretical 
data are available, occur behind the front of a shock wave. Many of these phenomena occur simul- 
taneously, rather than in sequence, and furthermore, influence one another (the excitation of vibra- 
tions and dissociation, ionization and radiation). Of these processes, we shal l  select  two and 
submit them to more detailed scrutiny, i.e., ionization and radiation, s ince as has been shown 
above, the remaining processes need not be taken into account in our problem. 

Let us estimate the energy Q ,  which is expended for the dissociation and ionization of a unit 
of m a s s  of gas  (the specific energy of dissociation and ionization). 

The number of ions of the r-th ionization in a unit of m a s s  of gas  is equal to nr/p,. The 
energy expended for one r-th ionization will be equal to  

where I, is the ionization potential. But s ince the ions of the r-th multiple have up to this point 
been ionized r - 1 times, the total expenditure of energy on their ionization comprises 

and the total ionization energy per unit of mass is 

where Yr = n,/n,, n, is the number of atoms in a unit of volume; pa is the atomic weight of air; 
and N is Avogadro's number. Analogously, the energy expended on total dissociation will be 
equal to 

(6.5) 

'For the time being, we have in view thermal conductivity by means of collisions of heavy parti- 
c les ,  i.e., molecules, atoms and ions. The part played by electronic .thermal conductivity will be 
discussed in Section 15. 
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Nitrogen 9,76 14.49 29.49 
Oxygen 5,08 13,56 35.00 
Air 8 . 7 3 .  14.29 30.70 

where n, is the molecule concentration; pm = 2pa is the molecular weight of air, Idis is the dis- 
sociation potential. Adding Qdis and Q;,,, we obtain 

47.24 77.09 97.47 - 
54.71 77.08 113.38 137.48 
48,88 77.09 100.97 137.48 

Substituting constants, we obtain Q in ergs per gram: 

where Idis and I; ore expressed in electron volts. We adopt here and in the future the values of 
Idis, I, for nitrogen, oxygen and air, considering the latter t o  be a single-component gas  equivalent 
to a mixture of 78 percent nitrogen and 22 percent oxygen, given in Table 2. 

Table 2 
Potentials of Dissociation and Ionization 

The sixth ionization of nitrogen has a potential of I, = 551 e v  and does not take place under 
the conditions we are dealing with. Therefore, w e  have assumed I, for air to be equal to the cor- 
responding value for oxygen, and for the relative concentrations of oxygen we shall, where neces- 
sary, introduce the correction factor 0.22. 

The values of Qdis and Q, for fully completed consecutive s tages  of ionization are cited in 
Table 3. 

Table 3 
Expenditure of Energy for Dissociation and Ionization 

- L _ ~  - 1 Qdis 1 QI 1 Qz I Qs I Qa I Qs 1 Q. 

Q,. 2.9.1OU 9.5.101' 2.0.10'2 3.2*10'2 5.1-10'' 6.7-10*2 9.1*101z 
Q 2.9.1011 1,2.1012 3.3-1012 6.5.1012 i.2.101s 1,8.101s 2.O-IOl3 1 - 1  I I I !  I 

For calculations of the total expenditure of energy on ionization in  the case of establishment 
of equilibrium, it is necessary to  determine the specific energy of equilibrium ionization Qes. In 
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order to  estimate the value of Qes, i t  is necessary to know the degree of equilibrium ionization. 
The method of determining this value is well known (see, for instance, Ref. 51), and consists in 
the computation of equilibrium constants for various conditions and s tages  of ionization. The 
equilibrium constants K, are in their turn expressed in terms of the s ta t is t ical  sums of ions ur and 
electrons uel: 

Ur+luel e-Ir/kT K r  = -- 

where I, is the ionization potential. Moreover, on the basis  of the m a s s  action law 

where a, a n d a , ~  express the corresponding concentration of ions and electrons in terms of one 
initial molecule. Obviously the following conditions must be fulfilled: 

(6.10) 

Equilibrium constants for all  possible s tages  of nitrogen and oxygen ionization for the tem- 
perature range of (2-500) lo-'' and values of relative density (in units of air density a t  sea 
level) p" = 10-10-3 are cited in the work of V. V. Selivanov and I. Ya. Shlyapintokh (Ref. 30). 
Determination of ion concentration a, and electron concentration a,l on the basis of them is re- 
duced to solving the equation system (6.9) and (6.10); this may be carried out, for instance, in the 
following manner. Since 

i t  is possible to write 

(6.11) 

(6.12) 

Assigning a number of values to ael, we compute a, for them on the basis  of (6.12), and then on 
the basis  of (6.11) we compute other instances of a,, after which on the basis  of the second form- 
ula (6.10), we obtain a & ~ ,  i t  being generally the case that akl f a , ~  (the initial value). The equal- 
ity aLl = a,l will hold true only for the value of a,l that is the desired one. It is found by inter- 
polation, after which with i t  will be repeated a calculation already of the final values of ar. 



33 

The value Qp is found according to formula (6.7), where y, should be assumed equal to 
(a: + aP)/2.  

By this method we have calculated, on the basis of Ref. 30, the values of a,, a,l for p* = 

10-1-10-3, i.e., for altitudes of 33-68 km. In addition, thanks to the courtesy of I. Ya. 
Shlyapintokh and N. M. Kuznetsov, we were able to make use of the results of analogous calcu- 
lations performed in the Institute of Chemical Physics, Academy of Sciences, USSR, embracing 

Figure 7. Change of equilibrium concentrations of air ions 
with temperatures for p* = 10. 

Figure 8. Change of equilibrium concentrations of air ions 
with temperatures for p* = lo-'. 
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the range of p* = lO-lO-', i.e., for the altitude range of 0-83 km (we assume the compression in 
the shock wave to  be approximately p* = 10). Both series of calculations were in excellent agree- 
ment for coinciding points. 

Figures 7-9 show the change of equilibrium concentrations of air ions yr for the temperature 
range of (20-200) - lo3 degrees and various values of p*. It is easy to  see from the graphs that 
ions with two, and in rare cases with three, multiples of ionization can be represented simultane- 
ously in a gas. 

Figure 9. Change of equilibrium concentrations of air ions 
with temperatures for p* = lop3. 

z _j 0 I 

Figure 10. Changes of equilibrium electron concentrations for various p*. 
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Change of the overall degree of equilibrium ionization, expressed by the ion concentration 
x = ae1/2, with air density and temperatures is shown in Figure 10; here, i t  can be seen that x in- 
creases not only with temperature, but a lso with altitude (i.e., with a diminution of p*).  

However, in real conditions, because of a reduction in the number of collisions behind the 
wave front per unit of time, actual ionization will diminish as altitudes increase, and at high alti- 
tudes an equilibrium state  will not be obtained. The nonequilibrium zone may then extend to the 
very body of the meteorite. In order to study conditions in the nonequilibrium zone, it is neces- 
sary to solve the system of equations of the kinetics of ionization in a shock wave. This ques- 
tion will be considered in Section 9. 

Section 7. The Basic Relationships in a Shock Wave 
in the Presence of Dissociation and Ionization 

The basic equations of the conservation of m a s s ,  impulse and energy in passage through the 
front of the shock wave have the form: 

P 9 2  = P1%, 

P2 + P2Vi = p1 + Plq, 

Here, p, p, v, and E are pressure, density, and the specific intrinsic energy of the gas;  the 
subscript 1 represents an unperturbed flow, the subscript 2 represents the compressed layer. From 
the first two equations of (7.1) we obtain the pressure behind the wave front: 

Since p2 >> pi ,  i t  is possible to assume that p1 = 0, and to  consider the pressure pa as being 
directly proportional to the square of the velocity of the meteorite. The value in the parentheses 
is close to 0.9, s ince the compression p2/p1 a t  meteoric velocities is of the order of 10 and over. 

Usually the value of gas  compression in a shock wave is determined by a formula stemming 
from the Rankin-Hugoniot relationships: 
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which a t  large Mach numbers, i.e., for pz >> pi, assumes the form of 

P.L - r + l  
p1 

’ r - I  ’ - _ -  (7.4) 

where y is the isentropic exponent of gas. For a diatomic ideal gas,  y = 7/5; for a monatomic 
gas,  y = 5/3; consequently, the limit compressions in this case will be sixfold and fourfold, re- 
spectively. The ratio of the pressures is expressed by a formula analagous to (7.3): 

However, the relationships (7.3) and (7.5) are valid only for ideal gases.  Meanwhile, the air 
in the shock wave formed by a meteorite differs considerably from an ideal gas with respect to i t s  
properties, this in particular being manifested by the facf that the isentropic exponent y becomes 
available-a function of temperature and pressure (for greater detail,  see Ref. 31). Under condi- 
tions of dissociation and ionization, the density and pressure ratios in passage through the front 
of a strong shock wave may be found by a more complex method, i.e., through numerical calcula- 
tion of the adiabatic shock wave. The method used in determining these and other thermodynamic 
values (entropy, intrinsic energy, etc.) is described in the works of V. V. Selivanov and I. Ya. 
Shlyapintokh (Ref. 30), and Ye. V. Stupochenko, e t  al .  (Ref. 31). In Ref. 32 detailed tables are 
given of the gasdynamic functions of air behind a straight shock wave for temperatures of 6,000- 
l2,O0O0, and initial pressures p1 from l-lO-’ atm. Ref. 30 includes tables of these functions for a 
wide range of temperatures, 20,000 to  500,000°, and relative densities p*, from 10 to lov3. 

Let us find the expression for the specific intrinsic energy behind the wave front c2. For 
this we use the basic’equations (7.1), disregarding the initial pressure p1 << pz, and the initial 
intrinsic energy e l  << ea. We obtain 

If the specific energy Q, expended for dissociation and ionization, is known, the compres- 
sion p;* may be found by substituting into the left part of (7.6) the sum of Q and the energy of 
forward motion C f o r W ,  which is equal to 

s ince for a fully dissociated gas  yo = 5/3. Carrying out the substitution, we obtain 



Q+--z 1 Pa 
2 Pa Pa - - (p2- l ) ,  2 Pa 

13.56 
12.52 

11,83 
11.21 
10,20 
9.82 
9.75 
9.52 
8.88 
8.32 

12:12 

whence 

14.82 
13.58 
13,71 
12.75 
11.68 
11,43 
11.22 
11.07 
10.51 
9.41 
8.64 
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(7.8) 

10.103 
15 
20 
25 
30 
50 
75 
100 
150 
200 
250 

Thus, as the shock of the energy expended for ionization is increased, relative compression 
p: grows. 

11.42 
11.26 
10.10 
9.93 
9.75 
8.97 
8.75 
8.62 
8.43 
8.08 
7.80 

Table 4 presents the values of p: = p2/pl, computed according to the data of Refs. 30, 32, 
for various temperatures and initial pressures p 

Table 4 
Compression of p: in a Shock Wave 

i O d  

15,27 
15,66 
14.85 
13.04 
12.62 
12.44 
12.53 
12.38 
11.14 
9.47 
8.42 

1 0 4  

16.10 
17,85 
15.13 
13.87 
14.97 
14.32 
14.00 
13.49 
10.88 
8.68 
7,75 

10-6 

18.30 
18.66 
15.19 
16.38 
16.41 
14.74 
14.18 
12.29 
8.46 
7.40 
7.12 

Having determined from Table 4 the value of compression p; according to the arguments p,, 
and the equilibrium temperature T, behind the shock-wave front, i t  is possible from tables appear- 
ing in  Ref. 30 to  find the pressure p2, the entropy s,, the intrinsic energy ea, and, furthermore, the 
velocity v, of the oncoming stream according to the formula 

(7.10) 

In our case, on the contrary, we are given the velocity v1 (the velocity of the meteorite), 
while the pressure pz may be found according to formula (7.2). As regards the equilibrium tem- 
perature T,, its determination will be discussed below. 
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We introduce the effective isentropic exponent yeff from the condition' 

P Yeff= 1 + p. 

On the basis of (7.6) and (7.11), we obtain the value of Yef f  behind the wave front 

From (7.12) we find the expression p z  in terms of y&f: 

(7.11) 

(7.12) 

(7.13) 

On the basis  of (7.12) and Table 4, we find the table of the values of yzff (Table 5). _ -  

Thus, for the conditions that interest us ,  ygff = 1.11-1.33. It should, however be stipulated 
that the tables of Ref. 30 are compiled under the assumption of the presence, behind the wave 
front, of the equilibrium of substance with radiation. 

Equilibrium radiation may be regarded as ideal gas with an isentropic exponent of y = 4/3. 
Since for a proton gas ,  y = 4/3 = 1.33 and p ;  = 7, the values of y* and p z  in Tables 4 and 5 at 
high temperatures tend toward these values. If under real conditions equilibrium with radiation is 
not attained, yzff  will be smaller, and p:  will be larger than the values in Tables 4 and 5. The 
ac ts  of energy exchange between radiation and substance may be (in order of their significance in 
strong waves) photoionization and recombination with radiation, deceleration radiation, and absorp- 
tion as a result of free-freetransactions, radiation and absorption in lines. 

Similar to the other relaxation processes considered above, the establishment of radiation 
equ,ilibrium requires a definite time, that i s ,  equilibrium is established a t  some distance from the 
wave front. Estimates of this distance are available in Ref. 41. We shall return to  a discussion 
of this question in Section 11. 

We shall now consider in greater detail the action of dissociation and ionization on the basic 
gasdynamic values, viz., on pressure, density, and flow velocity behind the wave front. 

Both of the processes under consideration are reduced to energy absorption. In this case ,  
for strong shock waves the following relationships hold true (Ref. 49). 

'This definition of yeff is that of Ya. B. Zel'dovich and Yu. P. Rayzer. 
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10.103 
15 
20 
25 
30 
50 
75 
100 
150 
200 
250 

Table 5 
Effective Indicator of the Adiabatic Curve Behind the Wave Front yzff 

1.19 
1.21 
1.22 
1.22 
1.23 
1,25 
1.26 
1.26 
1.27 
1.28 
1.29 

I PI 

1.16 
1.17 
1.18 
1.18 
1.20 
1.22 
1.23 
1.23 

. 1.24 
1.25 
1.27 

1.14 
1.16 
1.16 
1.17 
1.19 
1.19 
1.20 
1.20 
1.21 
1.24 
1.25 

1,14 
1.14 
1.14 
1.16 
1 . I 7  
1.17 
1.17 
1 . I 7  
1.20 
1.24 
1.27 

1.23 
1 .I2 
1 . I 4  
1;16 
1 . I 4  
1.15 
1.14 
1.16 
2.20 
1.25 
1.30 

1 . I2  
1.11 
1.14 
1.13 
1.13 
1.14 
1.15 
1:18 
1.27 
1.31 
1.33 

(7.14) 

(7.15) 

(7.16) 

the parameter A > 0 is expressed in terms of the quantity of absorbed energy (per unit of m a s s )  Q,  
in the following manner: 

(7.17) 

where y* is the isentropic exponent behind the wave front; and, v, and u are, respectively, the 
speed of the shock wave and the velocity of the medium behind the wave front in  a system of coor- 
dinates connected with unperturbed gas. All value.. for the case  of energy absorption, (Q > 0), are 
marked with a prime. Obviously, i f  Q = 0, then A = 0 and formulas (7.14)-(7.16) will assume their 
trivial form (see formulas (7.2) and (7.4)). From formulas (7.14)-(7.17) i t  follows (with formulas 
(7.1) taken into account): ' 

PZ _ - -  U' -- 1 + A i  
Pz 2 '  

(7.18) _ -  



40 

- - - - - 
- - - 0.62 - 

0.156 0.40 0.82 - - 
0.068 0.182 0,36 0.64 - 
0.040 0.102 0.20 0.36 0.58 

A 

(7.19) 

- 
_ 
- 
- 
0.60 

(7.20) 

10 
20 
40 
60 
80 

It is very easy to see that when Q = 0, these ratios become equal to unity; however, if Q > 0, 
then 

0.58 
0,14 
0.036 
0.016 
0,0090 

In other words, pressure, density on the front, and flow velocity behind the front (with respect t o  

motionless gas)  are greater in the case of a wave behind in which dissociation and ionization are 
taking place. 

In a system of coordinates connected with the shock wave and the heat of a meteorite, the 
flow velocity behind the wave at  the deceleration sector, v, = v, - u, on the contrary, will in this 
case be less.  The temperatures behind the wave front will obviously also be less. 

In the expression for A,, (7.17) is included the ratio of the specific energy of dissociation 
and ionization Q to  the specific kinetic energy of the oncoming stream v:/2, that is, the value 
Q* = 2Q/v:; w e  cite here a table of this value for various s tages  of ionization and velocities of 
the meteoric body (or, similarly, of the oncoming stream) v, (Table 6). 

Table 6 
Relative Specific Energy of Dissociation and Ionization Q* 

On the basis of the values for Q* cited in Table 6, it is not difficult to calculate the values 
A, and A for fully completed stages of ionization. 

Obviously, Q* < 1, from which, on the basis of (7.17), we obtain for any y the condition 1 < 
A, < y. Therefore, in cases where values of Q* > 1 were obtained from formula (7.17), a dash 
w a s  entered in Table 6. Physically, this signifies that, a t  the corresponding velocities v,, the 
given styles of ionization either do not occur a t  all ,  or occur only partially. 
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1.02 
1.30 
1.79 
2.78 
5.60 

11.3 

In Table 7, for three values of y,  according to the argument of Q*, are shown the values of 
p, = p:/p,; p ,  = p:/p,; 0, = v:/v,. 

___-- 

0.06 
0.77 
0.56 
0.36 
0.18 
0.09 

From Table 7 i t  can be seen that the values P,, p , ,  0, depends only slightly on y, but the 
relative density increases perceptibility, and the velocity falls with the growth of Q*. This result 
agrees qualitatively with the conclusions of V. A. Prokof'yev (Ref. 45, Figures 2 and 4). It is 
true that in Ref. 45 the ratios p2 and 0, have, respectively, a maximum and a minimum according to 
the argument p: = p,/p,, but this is explained by the fact that i ts  calculations were performed for 
a monatomic gas (hydrogen), where after completion of the first ionization, Q ceased to grow, and 
therefore, with a further increase in the amplitude of the shock wave, the ratios 2Q/v: began to 
diminish. 

- 

1.003, 1.02 
1.030 1.28 
1.054 1.75 
1.075 2.63 
1.102 5.45 

Table 7 
Influence of Dissociation and Ionization on the Gasdynamics 

Parameters Behind the Wave Front 

O:Lu 
0,78 
0.57 
0,38 
0.18 

. .. - Q '  
P z  

0,02 
0.2 
0 : 4  
0.6 
0.8 
0.9 

1.001 
1.010 
1.020 
1.030 
1.040 
i.045 

. 

.1.02 
1.27 
1.70 
2;56 
5.25 

0.9s 
0.79 
0.59 
0.39 
0.19 

P1 

1,005 
1.046 
1 .OS8 
1.12s 
1,164 
1.182 

Study of the dependence of Q* on the amplitudes of the wave for air ,  and changes of the 
value under actual conditions require solution of the equations of ,ionization kinetics, and this 
will be done in Section 9. 

Let u s  consider in greater detail the question of the temperature in the shock wave under 
conditions of dissociation and ionization. 

Since the process of ionization is accompanied by the loss of energy, the temperature behind 
the shock-wave front must fall from some value, T,, a t  the wave front to the equilibrium value, T,. 

If the processes of the excitation of vibrations and dissociation did not take place in a 
shock wave, the temperature a t  the wave front would be determined according to the well-known 
formula derived from the general equations of a shock wave (7.1), and the equation of the state of 
an  ideal gas  (Ref. 49): 

P2 P1 T, = TI---- 
Pl Pa ' (7.22) 
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or, with (7.4) takes into account, 

(7.23) 

where y is the indicator of the adiabatic gas curve behind the breakaway. 

However, in strong waves the temperature a t  the front never attains the value T, due to  
energy expenditures for excitation of internal degrees of freedom and for dissociation, and also 
due to the increase in the number of particles. Therefore, the actual temperature of the shock 
wave front, T f ,  will be 

(7.24) 

where p' and p' are determined by formulas (7.14) and (7.15); a is a multiplier that takes into 
account the changes in the number of particles and of the isentropic exponent in the case  of com- 
plete dissociation. 

Let yo be the isentropic exponent for diatomic gas previous to dissociation, and let  y1  be the 
same for monatomic gas. We have the energy equation 

E=-- - 1 P  
r-! P 

and the equation of state for a variable number of particles 

N _ -  - - R T .  
P No 

From (7.25) and (7.26) it follows (since yo = 7/5, yl = 5/3, and N / N o  = 21, that 

TI--1 No 5 
yo--1 N 6 ' a=--=- 

and, in this manner, 

(7.25) 

(7.26) 

(7.27) 

(7.28) 

Substituting (7.14), (7.15) and (7.17) into (7.28), we find 



or 
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(7.29) 

(7.30) 

where y* is the effective isentropic exponent a t  the wave front, dete5mined -from (7.12); A and A I  
are determined by formula (7.17) with substitution of the specific dissociation energy, Qdis, for 
Q; cv is the heat capacity of air before the front,' equal to 7.15 . lo6  ergs/g * deg. 

* 
Equilibrium temperature T,, which becomes established simultaneously with the establish- 

ment of equilibrium ionization, is a lso  determined according to formula (7.29), or formulas (7.30) 
and (7.17), but now in formula (7.17) one should assume that Q = Qeq when Qeq is the expenditure 
of energy for the attainment of equilibrium ionization (per unit of mass), computed according to 
formula (6.7), with substitution of equilibrium values of the degrees of ionization. 

Although T, is a fictitious value for strong waves, it makes sense. to compare i t  with Tf ,  
initially, in order to obtain a clear conception of the influence of dissociation on temperature and 
on the consequences of not taking this  influence into account, and secondly, for convenience, 
since T, is easily computed, and the transition from T, to Tf  and T, is simpler than direct compu- 
tation of these values according to formulas (7.17), (7.29) and (7.30). 

On the basis of (7.22) and (7.28), we find for the desired temperature ratio 

(7.31) 

Formula (7.31) permits considerable simplification for small instances of Q*, i f  small 
second-order values with respect to  unity are  neglected. Substituting A I  from (7.17), we obtain 
simply 

The error of formula (7.32) for Q* 5 0.4 is less than 5 percent. 

(7.32) 

'In place of 5/2cv it is possible to  substitute the value, equal to i t ,  of p/'Ro, where R, is a uni- 
versal gas  constant, p is the molecular weight of air before the. front. 

L 
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Table 8 contains (for various p, and a range of meteoric velocities) the values of Tf ,  T, and 
T, (for comparison). Figure 11 shows the dependence of temperature T, on parameters v, and p, 
for the meteoric range of velocities and densities. 

__ - 
p l = i  atm 

TY I Tf 

54 000 27 800 
161000 114500 
386000 301000 
689Ooo 553000 

1 100OOO 897000 
1590000 1300000 
2350000 1940000 

As may be seen from Table 8, the influence of dissociation on the "peak" temperature is 
particularly great a t  small shock-wave amplitudes, and is less considerable a t  large amplitudes. 
The influence of ionization, on the other hand, increases with the amplitude, this being connected 
with the change of the relative contribution of these phenomena to  heat capacity. 

I 20700 43 800 21 600 
41 000 139 000 99 OOO 
68 400 338000 264000 
97 600 624000 501000 

129 000 974000 792000 
162000 1450000 2 190000 
203000 2100000 17300OO 

18250 
82500 

213000 
392000 
619000 
898000 

1430000 
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13000 
24600 
42100 
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75800 
94200 

129000 

Table 8 
Behind the Shock-Wave Fmnt 

41 400 
127 000 
300000 
556000 
870000 

",25OOoo 
1880000 

I ,m=it)-* atm 

21 200 
90 500 

234000 
447000 
708000 

1030000 
1 553000 

~~ 

12 
20 
30 
40 
50 
60 
72 

34 800 
109 000 
232 000 
439 OOO 
645 000 
985 OOO 

1580000 

32 400 
103 OOO 
217000 
412000 
665 000 . 
985000 

2290000 

I p1=iO4 atm 

16 100 
73 000 

169500 
332000 
541 000 
809000 

189OOOO 

14 500 
.27 100 
46 600 
66 400 
87 000 

111 000 
143 000 
~ 

17 400 
78 000 

181 000 
353 000 
525 000 
809 000 

1 308000 

- 

11 600 
21 800 
35 900 
50 000 
66 700 
81 100 

111 000 

37 200 
115 500 
274 000 
487 OOO 
760 000 

1090 000 
1 730 000 

TI 

16 800 
32 000 
55 000 
79 000 

106 000 
133 OOO 
169 OOO 

- 

p ,  = 1 0 4  atm 

10 700 
20 800 
30 200 
44 700 
62 400 
76 300 

148 ooo. 
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Figure 11. The function T, (vl, pJ .  

An increase in the influence of ionization a t  high altitudes (the ratio Tf/T, is larger there). 
This is to be explained by a rise in the degree of equilibrium ionization in rarefied gas (see Sec- 
tion 6). 

The las t  of the processes that must be discussed, occurring behind the front of a shock 
wave, is adiabatic compression and heating of the gas  between the front and the body. If p2 and 
T, are  the pressure and temperature behind the wave front, while p, and T,  are the pressure and 
temperature in the point of full deceleration, we have the pressure ratio (Ref. 49) in the case  of 
strong shock waves: 

and for the temperature ratio 

For various instances of y these ratios have the following values: 

(7.33) 

(7.34) 

Y 1.40 1.30 1.25 1.20 1.15 1.10 
pJp, 1.105 1.075 1.062 1.048 1.038 1.022 
TJT, 1.029 1.017 1.012 1.008 1.005 1.002 
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Obviously, the adiabatic compression is not great and i t  is possible generally to disregard 
adiabatic heating, and subsequently to assume T, = T,. 

Section 8. The Influence of Radiation on the Structure 
of a Shock Wave in the Presence of Ionization 

As has already been said before, radiation exerts a substantial effect on the structure of a 
shock wave and on the temperature distribution both in front of and behind the front. A brief re- 
view of the basic literature in which this problem has been studied is provided in Section 6. Our 
task is to apply the theory developed in these reports to the case of strong ionization. 

It is generally possible to consider two basic cases of strong shock waves with radiation: 

Case I. The radiation formed behind the front of the shock wave is entirely absorbed directly 
before the front (in the so-called heating region), without passing outside (deexcitation is absent). 

Case 11. The radiation to a considerable extent passes  outside; in other words, the radiation 
flux through the front differs from zero (deexcitation of the shock wave occurs). 

The first case has been investigated in detail by Ya. B. Zel’dovich (Ref. 46) and Yu. P. 
Rayzer (Ref. 47). The qualitative pattern of the temperature change in this case has the following 
form (Figure 12). 

5 - 0  c c  
4c)- ‘i L ’ lt. 

Figure 12. Change of T in passage across 
the front of a shock wave in the ”subcriti- 
cal” case (according to Zel’dovich and 
Rayzer). 
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Before the front, in the heating region the temperature constantly rises from the initial value 
T, to some T- > T,. Subsequently, a t  the front there occurs a temperature jump to the value T+, 
and then a gradual lowering to  the equilibrium value T,. 

In the presence of a radiation flux, the basic shock relationships (7.1) will assume the form: 

PV = PlV1, 

P + P2 = Pl-+P1"3, 
1 
1 c 

pv ( E  -+ + $) $- F = plvl (q + E $- f) +PI. \ 
For strong waves, in finding the solution of equations (8.1) behind the wave front, the values 

and p1 are disregarded. Under these conditions the third equation of (8.1) takes the form: 

p v2 F V 2  F1 E f - - + - - + - = l  
P 2 pv  2 + p , v l '  (8.2) 

It should be remembered that since the radiation flux and the hydrodynamical energy flux are 
directionally opposed, the magnitudes F/pv and F,/p,v, are negative. Henceforth, where neces- 
sary, we shal l  u s e  the absolute values of these magnitudes. 

Let u s  consider Case I (deexcitation is absent, F, = 0). Under the assumption of constant 
heat capacity, the temperature .and the radiation flux are expressed in terms of inverse compres- 
sion, T ]  = p J p ,  in this point, and in terms of inverse compre,ssion behind the front, in the following 
manner (Refs. 45, 47): 

Considering that the radiation flux does not undergo discontinuity a t  the wave front (Ref. 
46), under the assumptions indicated above, Yu. P. Rayzer obtained the following expressions for 
temperatures T+ and T-: 

c = - ( " ) 4 .  T-  1 
2 Tc, 
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Here, T,, is the critical temperature a t  which the radiation flux is equalized with the hydro- 
dynamic thermal flux; according to  Yu. P. Rayzer (Ref. 47), T,, is determined by the formula 

Expressions (8.5) and (8.6) are valid for the case of T, < Tcr.  If, on the other hand, T, > 
T,,, the relationships 

will be in effect. 

This is the case of an "isothermal jump," in which, with the exception of the region with a 
narrow temperature peak, T+, the temperature in the heating region before the wave front smoothly 
passes  into the temperature behind the front (Figure 13). It is precisely such a pattern (but with- 
out a peak) that is obtained in the approximation of radiant thermal conductivity. As we shall see 
latter, this case (T, > T,,) takes effect in the movement of meteorites a t  high altitudes with high 
velocities. 

A disadvantage of formulas (8.5)-(8.8) is that they are derived under the assumption of con- 
stant heat capacity and molecular weight of the gas. Meanwhile, under actual conditions, as we 
have already seen, the exponent y,  as well as the mean molecular weight of air, p,  are variable. 
In practice, T,,, T-, and T+ are determined on the basis of tables of the thermodynamic properties 
of air a t  high temperatures (Refs. 30, 32). 

Figure 13. Change of T in passage across 
the front of a shock wave in the "supercriti- 
ca1" case (according to  Rayzer). 



49 

p1=l - - - - 0.6 
pi=IO-’ - - - 0.6 3.8 
~ l = l O - ~  0.9 1.9 3.6 7.0 11.9 
PI=IO-~ 4.7 6.8 , - - - 

For given values of pl and T,, the intrinsic energy of the gas  prior to breakaway, c(T-), is 
determined, according to Yu. P. Rayzer (Ref. 47), from the condition that the radiation energy ab- 
sorbed in the heatirig zone goes entirely to increase the intrinsic energy of the gas: 

1.8 7.6 14.3 25 60 118 285 
8.3 19 47 83 - - 117 
23.5 - - - - - 38 
- - I -  - - - 9.3 

where D is the velocity of the wave front corresponding to the given instances of p1 and T, (spe- 
cifically, for a meteorite D = v,). The temperature T- is found from c(T-) on the basis  of the 
tables in Refs. 30, 32. The critical temperature T,, is found from the condition T- = T, = Tcr. 

For normal pressure (at sea level) Yu. P. Rayzer in Ref. 121 obtained T,, = 285,OOOO and a 
ser ies  of values of T- for various given instances of T,. We performed similar calculations for 
various altitudes and pressures. The results are shown in Table 9. 

Table 9 
Temperatures T- and T,, (thousands of degrees) 

From Table 9 i t  can be seen  that with a reduction in the pressure of unperturbed gas, i.e., 
with an increased altitude, the value T,, rapidly diminishes. The dependence of the temperature 
conditions on the altitude and velocity of the meteorite can be seen graphically from the following 
table, where the values of the ”initial velocities” corresponding to given instances of pl  and T,, 
are shown. 

p l , a tm ........................... 1 lo-’ 
H,  km ............................ 0 14 32 49 
T,,, thousands of degrees . .  ....... .285 117 38 9.3 
vcr ,  km/sec ...................... >72 55 26 10 

It follows from this that a t  lower than 10 km the conditions for meteorites will always be 
subcritical, and a t  higher than 45 km the conditions will always be supercritical; a t  altitudes of 
10-45 km the conditions are determined by the velocity of the meteorite. 

Le t  u s  now consider Case 11, in which deexcitation takes place, i.e., the radiation flux 
through the front F, > 0. The temperatures behind the front will then be lower than in the preceding 
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case,  and i ts  equilibrium value T* < T,. The value of T* is determined in the function of T,, and 
F, by the following expression, obtained by S. A. Kaplan and I. A. Klimashin (Ref. 33): 

I. (8.10) 

Obviously when F, = 0, T* = T,. 

A complete solution of the equation system (8.1) has been given by Kogure and Osaki (Ref. 
41), who obtained expressions .for the temperature, the radiation flux, and the pressure and density 
a t  any point both before and behind the wave front. 

Let u s  cite these expressions here. The temperatures T, before the front and Tb behind the 
front are determined in terms of the radiation fluxes Fa and F b  in the following manner: 

(8.11) 

(8.12) 

An independent variable is the optical thickness T, read off from the point with a temperature 
of T,  towards the front. At the wavefront, T = q. The radiation fluxes Fa and F b  are determined 
by the formulas: 

(8.14) 

In these formulas the value rf is a parameter, and the coefficients bo, b, and b* have the 
following sense: 

The temperatures T- and T+ are found from (8.11) and (8.12), if we assume in them that Fa = 

F b = F f .  Then 
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(8.16) 

The qualitative pattern of temperature change in the function of optical thickness r is repre- 
sented in Figure 12 for two cases: F, = 0 and F, > 0. 

For us these solutions are  of interest because two processes that appear to be completely 
different exert qualitatively a completely identical influence on the thermodynamic functions be- 
hind the front of the shock wave (temperature, density, pressure). Actually, expressions (7.20) 
and (8.10) will be identical if in (8.10) IF,/p,v,( is replaced by Q (the specific energy of ioniza- 
tion), and equation (7.17) is used. The s a m e  refers to formulas (7.18)-(7.19) for pressure, den- 
si ty,  and steam velocity. 

It is readily apparent that this is true in that both processes may be regarded as an energy 
sink. Therefore, the qualitative pattern of temperature distribution within a shock wave in the 
presence of radiation and ionization may be represented analogously to the pattern for Case I1 
(with deexcitation). 

At high altitudes it is a l so  possible to encounter a case where both ionization and deexcita- 
tion will take place. In this case, formula (8.2) will take the form: 

(8.17) 

It would be tempting to use the solution of Kogure-Osaki for calculating the temperature dis- 
tribution in a shock wave with simultaneous consideration of ionization and radiation. This i s ,  
however, difficult in practice for two reasons. First, in this solution, as in the solution of Yu. P. 
Rayzer, it is assumed that y = const, although for various conditions of the problem the values of 
y are taken in accordance with the condition (7.12). Second, for each point i t  is necessary to 
know the value Q and, consequently, the degree of ionization x. It is, however, possible to deter- 
mine the latter in each point of the nonequilibrium zone only by solving the equation system of 
ionization kinetics. Such a system, the derivation of which will be given in  Section 9, cannot be 
solved analytically because of i t s  complexity. It is solved by numerical methods. As a.result, 
there is found not only the degree of ionization a t  any point behind the wave front, but a l so  the 
distribution of the ion and electron temperatures, as well a s  the value of the equilibrium temper- 
ature T,. Examples of such a solution will be given in Section 12. 

In solving the equation system of ionization kinetics, however, it is very difficult to take 
into account the effect of radiation. Therefore, i t  is unavoidably necessary to proceed according 
to the method of successive approximations, that is ,  first to solve the equation system of 
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ionization kinetics without taking account of radiation, and thereafter, by means of the method of' 
Zel'dovich-Rayzer or that of Kogure-Osaki, to take into account this influence of radiation on 
temperature distribution. 

The question of the effect of shock-wave radiation on this meteorite body will be considered 
in Section 14. 
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CHAPTER 2. DISTRIBUTION OF TEMPERATURE 
AND IONIZATION IN THE SHOCK WAVE 

Section 9. The Equations of Ionization Kinetics and Energy Exchange 

We shal l  now consider the region of nonequilibrium ionization behind the shock-wave front. 
Here we first encounter a discontinuity between the ion temperature and the electron temperature, 
originating directly behind the front. Because of the small m a s s  of electrons in comparison to 
ions, the electron temperature T, makes almost no jump a t  the wave front, and is found to be con- 
siderably lower than the ion temperature Ti (Refs. 42, 52). The difference between them gradually 
diminishes due to the transfer of energy from ions to electrons. The value of the transferred 
energy (per one ion and electron), according to  L. 0. Landau (Ref. 53) is equal (in erg . cm3/sec) 
to: 

where me and mi is the electron and ion m a s s ;  e is the electron charge; z is the ion charge in 
terms of units of electron charge; k is Boltzmann's constant; L is a logarithmic multiplier, the 
significance of which will be explained below. Expressions similar to (9.1) have a l so  been used 
by Petschek and Byron (Ref. 54), who studied the establishment of equilibrium ionization behind 
strong shock waves in argon, and by Bhatnagar, e t  al., (Ref. 55) and S. B. Pikel'ner (Ref. 56), 
who studied the passage of shock waves in the formative s tages  of plasma. 

Denoting the concentration of electrons and ions by ne and n;, and taking into account that 
z = r (ionization multiple), and introducing the designation 

we obtain the following expression for the r ise  in electron temperature as a result of energy ob- 
tained from ions: 
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3 dT 3 T .  -T 
T k n e  (2) , d t .  2 = - k n e A , ~ n r r 2 X L .  Ts/s 

r e 
(9.3) 

Energy obtained from collisions with ions is used by electrons for the further ionization of 
atoms and ions. The estimate of energy expended on ionization depends on the adoption of one of 
the following two schemes. 

Scheme I. It is assumed that under the influence of electron impact there occurs "stepwise 
ionization," that is the passage of electrons from the basic level to  excited levels, and then ioni- 
zation from the excited levels. Therefore, the total ionization level is considered to be equal to 
the potential of ionization from the basic level I,. 

Scheme 11. It is assumed that a Boltzmann distribution by levels is always in effect when 
temperature r ises ,  with excitation occurring due to  radiation. In this case the ionization energy is 
considered equal to the binding energy of the AIr,n- 

As will be shown below, Scheme I does not reflect the actual course of the phenomena, and 
Scheme I1 will have to  be taken as the basis. However, Scheme I is convenient for calculations, 
and the transition from it  to  Scheme I1 affords no difficulty. Therefore', we shall consider both 
schemes and shal l  compare expenditures on ionization in one and in the other. 

In Scheme I the energy loss on the r-th ionization, and consequently, the reduction of elec- 
tron temperature comprise, 

where I, is the potential, and Z, is the coefficient of the r-th ionization, i.e., the quantity of acts  
of ionization for one ion and electron per second. Summing along all  s tages  of ionization, we 
have for the loss of energy on ionization: 

In formulas (9.4) and (9.5), the second parenthesized term expresses the energy communi- 
cated to an electron knocked out in the course of ionization (under the assumption of a Maxwell 
distribution of the velocities of an electron gas). 

Let u s  now consider Scheme 11. If we consider the atom levels to  be hydrogen-like, i.e., if 
we assume that AI, = I,/nz, where n is the main quantum number, the energy of the r-th ionization 
from the level of n will be equal to 



Summing level by level, with account taken of the Boltzmann distribution, we obtain 

where g, is a s ta t is t ical  weight; UrWl is the sum with respect to the s ta tes  of the atom or the 
(r - 1) ion; ul = I JkT, ,  u, = ul/nz. In the hydrogen-likeness approximation, i t  may be assumed 
that g,/U,-, = n2. 

Let  u s  simplify formula (9.7) by substituting in i t  the expression for the ionization coeffi- 
cient Zr,, obtained in Ref. 64 (see below, Section 10): 

Z r ,  = AzT,"'n Ei, (un), (9.8) 

where A, = 1.1 e lo-'. The summation in formula (9.7) may be replaced by integration along n 
from 0 to some limit level, no, determined by reduction of the ionizatioh potential due to Coulomb 
interactions (Refs. 64, 69). Then the first parenthesized term in (9.7) will be equal to 

K ,  = AzT:'zIre-ul 5' neun Ei, (u,) d n  = 
0 

where it is designated that 

The integral 

00 . 
J (u0) = \ - Ei, (u,) dun 

u, 4 

(9.9) 

(9.10) 

(9.11) 

is computed numerically, or graphically. In the interval lo-' < u, < 5, it  may be approximated by 
the expression 

log J(u,) = - O.ll(log u,)' - 1.71 log U, - 0.475. ' (9.12) 
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The energy expenditure on the r-th ionization will now be equal to  

3 
- - n,n,, [A2T~1aIre-U~ 2 J (uo) + 

I 
kTeZr] ,  

3 (9.13) 

and the total energy expenditure on ionization is obtained by the summation of (9.13)' along the 
s tages  of ionization r. 

In order to compare the energy expenditure on ionization in both schemes, we form the ratio 
K1/IrZr, In doing so, we take into account the fact that, according to Ref. 64, 

Then 

Hence, the ratio of the energies expressed by formulas (9.13) and (9.4) is equal to 

(9.14) 

(9.15) 

(9.16) 

For convenience in making calculations according to Scheme 11, it is necessary that i t  be 
possible to calculate+he numerator in formula (9.16). 

Therefore, in Table 10 are shown the values of J(u,), of u,Z.', and of their products. Obvi- 
ously, the energy expenditures in the two schemes would be equal with fulfillment of the following 
condition 

But s ince usually u , > l  and even u,>2.5, the condition (9.17) is never'fulfilled, and EII<EI 
and I? < 1 will always be the case  (Figure 14). This is also clear from the general considerations, 

'As will be seen  in Section 10, for complex atoms when summing Zr,n within the limits of the 
Boltzmann distribution, the sum should be multiplied by the multiplier rr, which takes multi- 
plicity into account. 
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0,30 
0.40 
0,50 
0,60 
0.70 
0,80 
0:90 
1,oo 
1.5 
2.0 
2,5 
3.0 
4,O 
5.0 

Table 10 

~ 

4,94*10-' 
1.01. IO-' 
1,77.10-' 
2,79*10" 
4,11.10-' 
5,73.10-' 
7.70-10-' 

1,oo 
2,76 
5.66 
9.87 

15,6 
32.0 
56.0 

UO 

0,010 
0,015 
0.020 
0,025 
0.030 
0.04 
0,05 
0.06 
0,07 
0.08 
0.09 
0:lO 
0,15 
0.20 

-- 
I .oo * 10-6 
2,76 - 
5.66 * 10" 
9 : 87.10-6 
1.56- IO"  
3,20-10-4 
5,60* I O 4  
8,83. I O 4  
1,30-10-8 
1?81-10-' 
2 43 * IO-' 
3.16 * lo-' 
8,74. 
1.79. 

121 .o 
B7.0 
.28.5 
95,4 
74.4 
50,0( 
36,7E 
28 ! 3: 
22.6: 
18.6; 
15 ~ 6! 
13.4( 
7.5( 

4.85; 

2.5 
uo J ( N  

3 21 * IO-' 
5,16 * IO-' 
7.27 * I O +  
9,41 -io-' 
1 ,I6 - 10-8 
1.60*10? 
2.06*10-' 
2 50 * 
2,95 - IO-' 
3.38 * 10" 
3, 82*10-a 
4,24 * IO-' 
8.55 10" 
8.70. IO-' 

2.562 
1,616 
1;125 

8.18 * IO-' 
6.42 - IO-' 
5,OO. IO-' 
4.08 10-l 
3.38 - IO-' 
1,68*10-' 
9.88. 
6.53. 
4.72. IO-' 
2.70. 
1,78. I O a  

ui' ' J (  u.) 

1.27 * IO-' 
1.63 IO-' 

2,31 *IO-' 
2,64*10-' 
2.86 * IO-' 
3.14010-' 
3.38 IO-' 
4,64- 10-1 
5,59 * IO-' 
6.44-10-' 

1,99. ID-? 

7.36 10-' 
8,64 * 10-1 
9,97* IO-' 

since the binding energy of the excited levels is always less  than that of the basic level; there- 
fote, the energy expenditure on ionization in Scheme I1 will be less .  

In addition to ionization, there will take place in a gas the process of recombination with 
triple collisions, in the course of which an electron recombines with an  ion, giving part of the 
energy to the third particle, which will almost always be another electron. As a result of recom- 
bination by triple collisions, the energy of an electron gas will receive an increment equal to 

I 

(9.18) 

where C::; is the coefficient of triple recombination of an electron to the n-th level of an ion of 
the r-th multiplicity, and CP) is the coefficient of recombination to all levels. The parenthesized 
expression in formula (9.18) is obtained in the following manner. In recombination to the n-th 
level, the following energy is released: 

(9.19) 

where AIr,n = I, - Ir,n is the binding energy of level n. Summing within the limits of n and r, we 
obtain 

(9.20) 
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Figure 14. Ratio of ionization energies E = EII/EI. 

Formula (9.20) may be simplified, adopting the approximation of hydrogen-likeness, i.e., assum- 
ing AIr,* = I,/nz. Substituting this expression for AIr,n into formula (9.19) and summing, we ob- 
tain formula (9.18). 

The expressions for the coefficients Ck)1 and C?) will be presented in Section 10. 

On the basis of'formulas (9.3), (9.13) and (9.18), we write the equation for the overall bal- 
ance of electron energy in Scheme 11): 

For the change of the ion temperature (andjon energy), we shal l  have the more simple 
expression: 

3 d T i  - kn - = - neniEie, 2 a d t  

(9.21) 

(9.22) 

where n, is the total number of neutral atoms and ions (their temperatures may be considered 
equal because of the rapid establishment of thermodynamic equilibrium among them). 
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The change in electron concentration ne as a result of the processes of ionization and re- 
combination will be expressed by the formula: 

(9.23) 

where C, is the coefficient of recombination from the r-th s ta te ,  including, in distinction from 
Ci3), all  forms of recombination. The change of concentration n, of ions that are in the r-th s ta te  
is ,  generally speaking, determined by the following four processes (Figure 15): 

process I 
process I1 - ionization from the r - 1-th s ta te  into the r-th s ta te ,  
process I11 - recombination from the r + 1-th s ta te  into the r-th s ta te ,  
process I V  - recombination from the r-th s ta te  into the r - 1-th state. 

- ionization to the r + 1-th s ta te ,  

Processes I11 and I V  are inverse in nature to processes I and 11. Obviously, processes I1 
and 111 bring about an increase in n,, while processes I and I1 bring about i t s  diminution. Thus, 

(9.24) 

For convenience in subsequent calculations, we introduce the degree of ionization x = ne/na 
and the specific ion concentrations y, = n,/na. W e  divide the two parts of formula (9.21) by nane, 
and those of formulas (9.22), (9.23) and (9.24), by n i .  We a lso  introduce the designations: 

(9.26) 

i 

Figure 15. The processes of ionization and recombination. 
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Also taking into account that the value z (the relative ion charge) entering into formula (9.1) 
is identically equal to r (ionization multiple), we obtain the final system of equations 

(9.27) 

In all  the formulas cited above, summation within the limits of r must be understood in the 
following sense:  

(9.28) 

which indicates summation from the first to the fifth ionization for air on the whole, and to the 
sixth ionization for oxygen alone. In practice, ions with two, or a t  most three, multiples of ioni- 
zation will be simultaneously present in ionized gas, but for the sake of generality system (9.27) 
should be regarded as a system of 10 conventional differential equations with 10 unknowns: T,, 
Ti, x,  yo, yl, . . . ys (by yo we designate the specific concentration of neutral atoms). Obviously 
Fnr = n, and Fy, = 1. The form of equations (9.27) is convenient in that the concentration of 
initial atoms n, determines only the time sca le  and does not enter directly into the right-hand 
parts of the equations. However, unfortunately, more detailed analysis (see Section 10) shows 
that the electronic concentration ne enters into the calculations in a complex manner' in terms of 
the coefficients Z,, C, and the value L. Therefore, for a given shock-wave amplitude it is impos- 
sible to make only one calculation, as has been done by S. B. Pikel'ner (Ref. 56); rather it is nec- 
essary to carry out a ser ies  of calculations for various instances of ne. 

Let us now consider the sense  of the logarithmic multiplier L.  Most authors (Refs. 53, 56- 
58) ci te  i t  in the form of 

L = 2InA, (9.29) 

where 

'This follows, in particular, from formula (9.30), as well as from the formulas of Section 10; in 
that Section i t  will be shown that the electron concentration influences the course of ionization 
due to reduction of the ionization potential. 
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(9.30) 

z1 and z2 being the charges of electrons and ions (in units of proton charge). The value of 
been tabulated by Spitzer (Ref. 57); however, for large instances of ne and small instances of Te,  
the values of A are not given, s ince the theory of the diffusion of particles in ionized gas  devel- 
oped by Spitzer then becomes inconsistent. Since the values of A absent i n  Ref. 57 are in the 
region of densities and temperatures that is of interest to us, we shal l  try to introduce some re- 
finements into this theory. 

has 

From the general theory of the diffusion of charged particles in ionized gas (Refs. 57, 58), i t  
follows that 

(9.31) 

where po is the parameter of particle collision corresponding to deflection of the lighter particle 
by 90'; pm is the "cutoff parameter," equal to the distance a t  which close interaction of the parti- 
c les  ceases. As has been shown by Cohen, Spitzer and Routly (Ref. 59), this distance in most 
ca ses  exceeds the mean distance between particles nY1I3, and may be taken as equal to the Debye 
radius hD, where 

(9.32) 

Designating that I\ = pm/p,, we obtain 

L = In(1 + A'). (9.33) 

Since usually A >> 1, it is from this that formula (9.29) is obtained. However, in the first 
place, a t  large instances of ne and small instances of Te, the value of A increases rapidly, and 
unity may not be disregarded in formula (9.33). In the second place, in  this case the Debye 
radius diminishes and, finally, when the condition, 

(9.34) 

is observed, the Debye radius becomes less than the mean distance between particles, and, there- 
fore, may not be taken for the Ifcutoff parameter." W e  shall, in this connection, stipulate to take 
hD as the "cutoff parameter" when X < 1, and nF1/3 when X > 1. The values of L determined in 
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7,34 
9.42 

10.75 
11.55 
12.24 
12.81 
13.26 
12,68 
14,02 
14.25 
15.48 
16.30 
16.99 
17.53 

Table 11 
Values of L 

5.78 
7,16 
8.33 
9.19 
9.97 

10,55 
11,OO 
11,42 
11.76 
11,94 
13,16 
14,02 
14.71 
15.27 

T e  

1.104 
2.104 

5.104 
6.104 

8.104 

1.105 

2.105 

3*104 
4.104. 

7.104 

9*104 

1.5*105 

2.5. I O 5  
3.105 

10" 
~ 

18,86 
20.88 
22.07 
22.90 
23.57 
24.11 
24.56 
24 ~ 96 
25 ~ 30 
26, GO 
26.76 
27,55 
28.16 
28.60 

io" 

16.55 
18.59 
19.80 
20.63 
21.31 
22 ~ 85 
22.30 
22.71 
23.05 
23.35 
24.52 
25.33 
25.96 
26.42 

iO1' 

14.25 
16.30 
17.53 
18.36 
19.05 
19.59 
20.04 
20.46 
20.80 
21.10 
22.28 
23.11 
23,76 
24.24 

i 016 

11,94 
14 ~ 02 
15.27 
16.09 
16 ~ 78 
17,33 
17.78 
18.20 
18,54 
18.86 
20,05 
20.88 
21:56 
22.07 

ne 

101' 

9?64 
11.74 
13.01 
13.82 
14.51 
15.07 
15.52 
15.94 
16.28 
16,55 
17.76 
18.59 
19.27 
19.80 

101' 

4,26 
5.62 
6.45 
7 ;OO 
7.57 
8.12 
8.57 
8.97 
9,33 
9.64 

L0,90 
L1,74 
12.44 
13.01 

i 01' 

2.78 
4.12 
4?93 
5,48 
5.93 
6.30 
6.59 
6,88 
7.12 
7,32 
8.55 
9.42 
0.09 
0.75 

io'] 

1.45 
2.16 
3.42 
3.97 
4.42 
4.77 
5.08 
5.34 
5.59 
5,SO 
6.61 
7.20 
7:78 
8.33 

this manner are shown in Table 11. From this table i t  follows that for hot air, L has an order of 
10, and for the range of ne = 10'6-1020 and T, = (1-30) . lo', the value of L is contained within 
the fairly narrow limits of L = 3-20. 

Section 10. Coefficients of Ionization and Recombination 

In order to calculate the processes of ionization and recombination behind the wave front in 
hot air that is in a s ta te  of plasma, it is necessary to know the coefficients of ionization Z,, and 
the coefficients of recombination C,. In order to obtain these coefficients, i t  is necessary to 
evaluate the comparative role of the various elementary processes; in contemporary scientific 
literature this is by no means done unambiguously. 

The basic mechanism of ionization in hot air is electron impact (Ref. 42). The general ex- 
pression for the coefficient of ionization by electron impact, as cited in astrophysics courses 
(Refs. 60, 61), has the form 

(10.1) 

Here v is the velocity of the striking electron; vo is the minimum velocity leading to ionization; 
and a,,,(v) is the effective cross section of the r-th ionization from the n-th level a t  a velocity of 
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v. It is usually assumed here that ionization takes place mainly from the basic level, s ince the 
population of excited levels is infinitesimal in the case of a Boltzmann distribution. 

In calculating the passage of a shock wave in the formative s tages  of plasma, S. B. Pikel'ner 
(Ref. 56) found that in this case the energy expanded on electron excitation is two orders greater 
than energy going for ionization. Such a relationship must actually occur for rarefied formative 
s tages  of plasma, where the energy expanded on electron excitation passes  into radiation, i.e., 
when deexcitation occurs. In hot air an entirely different pattern will take place. At high temper- 
atures air is almost opaque to radiation, in other words, the energy of electron excitation passing 
into radiation will again excite another atom or ion, an equilibrium (Boltzmann) distribution will 
be established in the gas  with respect to the levels, and there will be little deexcitation. There- 
fore, in our case it is not necessary to take into account the expenditure of energy on excitation 
(without subsequent ionization). 

We find the coefficient of ionization Z,, from the basic level. In computing the integral 
entering into expression ( l O . l ) ,  it is customary (Refs. 60, 61) to use  the concept of the mean 
effective cross section of ionization C,,", carrying i t  out beyond the integral sign. Then 

(10.2) 

Here it is taken into account that I, = M,v22. However, the value or,v depends on the temper- 
ature T,, and on the ionization potential I,, i.e., on vo. Therefore, i t  is convenient, as has been 
done in Ref. 56, to make use of the circumstance that in the energy range of interest to  us ,  the 
value increases linearly in the function vz  (Figure 16). In this case 

(10.3) 

Figure 16. Dependence of the cross  section 
of ionization on electron velocity. 
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where oo is the effective cross  section of ionization a t  an  energy of 21,, i.e., a t  a velocity of 
v o f l  Substituting (10.3) into (10.1) and computing the integral, we find the following expression 
for the coefficient of ionization:' 

From a comparison of (10.2) and (10.4) i t  immediately follows that 

2kT, 
- i +  I, 
Gr! u = QO I ,  = Qo 

i +  kT, 

(10.4) 

(10.5) 

Assuming that uo = 8.8 . c m z  and substituting the numerical values of the constants 
into formula (10.4), we reduce i t  to a form that is convenient for calculations: 

(10.4a) 

The values of the coefficients of ionization from the basic level, computed for air according 
to  formula (10.4a), are shown in Table 12 and in Figure 17. 

However, ionization from. the basic level far from determines the overall course of ionization. 
As has been shown in the work of G. S. Ivanov-Kholodnyy, G. M. Nikol'skiy and R. A. Gulyayev 
(Refs. 62, 63), a s  well as in that of L. M. Biberman, Yu. N. Toropkin and K. N. Ul'yanov (Refs. 
64, 65), the greatest contribution to  ionization is made by the upper levels. Actually, despite 
their low population in comparison to  the basic level, the coefficient of ionization from the upper 
levels increases sharply because of the reduction of the binding energy of the levels. 

The ionization coefficient of hydrogen from the level n is equal (Ref. 64) to: 

2, = 1.1 T-"'n Eil (u,), (10.6) 

where u, = I,/kTn*, and Ei,(u,) is an integral indix function. The course of the product n . Ei,(u,) 
with the level number n for various values of u, = I,/kT is shown in Figure 18. 

'In Ref. 56 in place of the multiplier[l + (2kT,/I,$ there stands simply kT,/I,; this is appar- 
ently an error. Therefore, the coefficients Z, there are excessively low by one-half an order of 
magnitude; this, however, is of little importance to the results of this work because of the pre- 
dominating role of electron excitation in the formative s tages  of plasma. 
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1.104 

3.1@ 
4.104 
5*104 
6 * I O 4  
7-104 
8.104 
9.104 

2.104 

1.105 

2.105 
1 .5*105 

2.5-10' 
3.10' 

Table 12 
Coefficients of Ionization from the Basic Level 

3.94. IO-'' 
2.46. IO-'' 
5,15*10-11 
2.59*10-10 
7.22'-10-10 
1.47 - 10:' 
2.54*10-' 
3,85. IO-' 
5.50- 10- 
7.38. IO-' 
1.99.10-8 
3.67. IO-' 
5.72. IO-* 
8.00.1 0-E 

- 
1.90.10-1' 

1.91-10-12 
1.32. IO-" 
4.47.10-11 
1,27 
2.67-10-10 
4.79.10-'O 
7.81. IO-'' 

7.57.10-14 

3.66.10-9 
8.80 * 10-9 
1, GO IO-' 
2.48 * 10-8 

- 
- 
- 

8.60. 10-15 
I ?72.10-13 
1J7.10-la 
5,56* 10-l2 
1.66*10-11 
3.99.10-11 
8,06* IO-" 
7.26 
2.45.10-9 
5.31 .IO-s 
9.37.10-9 

- 
- 
- 
- 

2,29 IO" 
4,98. 10-15 
4.61.10-14 
2 , ~ .  10-13 
9.34.10-13 
2.71 
7,29* 
4,03* IO-'' 
1.19. IO-' 
2.55.10-9 

- 
- 
- 
- 
- 
- 

9.58-10-" 
8.20.10-15 

1,80.10-19 
4.49 - 
1.24*10-11 
1.10.10-10 
3.62 - 
1 .IG. 10-9 

3 't 5 6 7 8 9 1 0  15 20 25 3U10'T 

Figure 17. Coefficients of ionization from the basic level. 

In order to determine the overall ionization coefficient of hydrogen (from all levels), Z, is 
summed taking account of the Boltzmann distribution level by level: 

(10.7) 

where g, are s ta t is t ical  weights, and U is the sum, by s ta tes ,  of the given atom or ion. The sum 
(10.7) diverges if we do not take into consideration the distribution by levels from the Boltzmann, 
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Figure 18. The product n Eil(un). 

which is the consequence of reciprocal ion perturbation (Coulomb interaction). This phenomenon 
has been considered in the classical  Thompson approximation by G. S. Ivanov-Kholodnyy, e t  al .  
(Ref. 62), and in the Bethe-Born approximation by L. M. Biberman, Yu. N. Toropkin and K. N. 
Ul'yanov (Ref. 64). The qualitative results of the two works coincide, and are reduced to the fact 
that levels above some no in an actual gas  are not realized. However, the evaluation of no for 
hydrogen in Ref. 62 is somewhat too low (i.e., the effect of charge exchange is exaggerated), as 
is shown by comparison with experimental data (Ref. 64). 

For evaluating ria in Ref. 62, there is proposed the formula (close to the analogous formula 
of Wiesold): 

(10.8) 

where n, is the electronic concentration. For various forms of plasma in Ref. 62, the following 
values of no are found, to  which we have added the values for hot air (Table 13): 

Table 13 

Form of plasma 

Formative s tages  of plasma.. .... 
Ionosphere .................... 
Solar corona. .  ................. 
Chromosphere. ................. 
Prominences ................... 
Hot .air. ....................... 
Hot air. ....................... 

ne T 

104 
103 
106 

5.103 
7.5*103 
I05 
105 

n. 

870 
420 
190 
58 
40 

8--10 
1-2 
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I 
'1 

It can be seen that in hot air there can actually be effectuated a comparatively small number 
of levels. On the one hand, this circumstance facilitates summation and makes i t  possible to pro- 
ceed entirely without integrating formula (10.7) along the upper levels, as is usually done. How- 
ever, a s m a l l  number of levels involves exacting requirements for a correct evaluation of n,. 

L. M. Biberman, Yu. N. Toropkin and K. N. Ul'yanov (Ref. 64) have obtained, as a result of 
the integration of formula (10.6) within the limits of the Boltzmann distribution (0 < n < no), the 
following approximate expression for Z, in the range of 0.01 < u, < 5, where uo is determined by 
formula (9.10): 

which may be reduced to the form 

(10.9) 

(10.10) 

In the astrophysical examples collected in Table 13, an error of 2-3 units in the evaluation 
of no will have little effect upon the result, since no  is large. In our example, however, when no is 
small, an error even of one unit will bring about a change of Z, by an entire order of magnitude, 
s ince no enters into the formula in the fifth power. At the s a m e  time, in an actual gas  the no 
levels of all the atoms of the gas will never be effectuated simultaneously. These will be in 
effect some statistical distribution of the atoms with respect to no, and, generally speaking, the 
effective value of no will be expressed by a fraction. 

In order to determine no we use the expression for reducing the ionization potential cited by 
Brunner (Ref. 66): 

A& = 0.121 (-&)'"+ 0.025 ( h2)"'. (10.11) 

The first term expresses the reduction of the binding energy, and the second term expresses 
the polarization effects originating with the movement of charges with a variable mean distance. 
An analogous expression with somewhat difficult coefficients is given by Eckert and Weizel (Ref. 
67), but we shal l  use  Brunner's formula, s ince i t  is based on newer data. 

Further, in accordance with Ref. 65, it may be assumed that 

(10.12) 

It is this expression that gives us  the value of n,. 
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Let us  now consider the phenomenon of recombination. This phenomenon can proceed along 
two courses, with the release of a radiation quantum and as a result of triple collisions, in which 
case the third particle to which the energy surplus is transmitted will almost always be an 
electron. 

As a coefficient of recombination with radiation, in the hydrogen-like approximation it is 
possible to  use Menzel's well-known formula (Ref. 57):l 

(10.13) 

where z is the ion charge (in terms of units of proton charge); A, is the capture constant, equal to 

- 2.11*10-22 cm; A ? = - - -  16 he2 
3 I/S 1n;cs 

$(u,) is a function tabulated by Spitzer (Ref. 57), and equal2 to 

(1 0.14) 

The value $(ul) for the required interval Te, is of the order of unity, as can be seen  from 
Figure 19. 

The comparative role of the various levels is determined by the temperature. When the tem- 
perature r ises ,  the relative quantity of recombinations to the basic level will r ise (Ref. 62). 
Therefore, the restriction of the number of levels, noted above, will have little effect on recom- 
binations with radiation. The values of the recombination coefficients C: are shown in Figure 20 
in the function T,. 

For triple recombination (or for recombination with three collisions), a formula is derived in 
Ref. 64 that determines the coefficient of recombination to  the level n: 

CPA = 8.8 . 10-2'T-%3eUnEil(un). (10.15) 

'In the work of Seaton (Ref. 68), this formula has a somewhat different form, but is easily reduced 
to the form of (10.13). However, this formula is applicable only to the isoelectronic hydrogen 
series.  

'Spitzer designates u1 by p, and in place of u, uses the expression (equal to i t) ,  P/n'. These 
designations have been a l so  retained in the article by the present author (Ref. 69). 
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Figure 19. The functions q!+(uI). 

I 

3 
I I l- . . l  I 1 1  
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Figure 20. Coefficients of recombination with radiation. 

After integrating with respect to the levels, we obtain 

C?) = 4.15 10-16eU1T-3/2Zr, 

or, after substituting (10.10) into (10.16), 

CL3) = 9,f3.10422'T-2 ( 2 ,'T )-".:. 

(10.16) 

(10.17) 
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It is, however, necessary here to  take into account that part of the upper levels is in practice 
not effectuated because of so-called counter ionization, when the probability of ionization from a 
given level exceeds the probability of spontaneous transition to lower levels. Therefore, the 
effective coefficient of triple recombination has the form 

(1 0.18) 

where A, is the probability of spontaneous transition from the level n (A, = 1.1 . 10'0n-4.5 sec-'). 

The authors of Ref. 64 propose to introduce summation to some level, n,  < no, starting from 
which the terms in the sum (10.18) diminish sharply, i t s  being possible, from this point, to disre- 
gard the 1 in the denominator. The remainder is determined by means of integration from n, to no. 

For our problem, however, this approach cannot be used, since the number of no levels is 
small (Table 13). Therefore, we shall make use of the concept of an effective boundary level with 
the quantum number neff ,  which we shall define a s  the value which, after substitution into formula 
(10.17), yields in place of no the precise value of Ci3)* computed by direct summation according to 
formula (10.18). An example of such summation and determination of n,ff is given in Ref. 69. 

The influence of counter ionization, which leads to stripping of the upper levels, is particu- 
larly strong in the case  of large instances of n. The maximum value of Ck:, when n, increases, 
passes  from the third level to the second, and then to the basic level. The value of neff when 
ne L 10'' is close to unity, in other words, the "life-time" of the upper levels, is rather low. 

In considering the course of the product C" = d 3 ) * n , ,  which determines the coefficient of 
recombination for one ion and electron, the following pattern is obtained (Figure 21). At not very 
great concentrations the value C" grows slowly, since a gradual transition of the maximum number 
of recombinations from the upper levels downward to the basic level, is taking place. Then be- 
gins a rapid growth of Cf', since,  despite continued weakening of the role of the upper levels, 
counter ionization from the basic level does not yet have a particular role, and d3)* remains 
almost constant with the growth of ne. Finally, with a further increase in ne the sector of satura- 
tion arrives, the cause of which is counter ionization. On the s a m e  Figure 21, dotted lines show 
the course of n,ff, which tends toward unity. With a reduction of T, n,ff increases approximately 
a s  T-'F. 

The comparative role of recombination with radiation and triple recombination depends on the 
values of ne, T, and the ionization multiplicity factor. When ne = lozo, triple recombination with 
radiation prevails, when ne = 10l6, recombination with radiation prevails. With an increase of T,, 
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Figure 21. Course of the product &)*ne (solid l ines),  and of n,ff (dotted lines). 
1 - hydrogen (T, = 17,500°); 2 - air (T, = 100,OOOo, r = 4) 

and with transition to higher ions, the role of the latter increases. The overall coefficient of 
recombination entering into the equations of Section 9 will be equal to 

c, = c: + c;. (10.19) 

To now w e  have considered all of the levels in atoms and ions to be hydrogen-like, although 
this is actually far from being true. In order to make a more precise computation for complex 
atoms and ions, it is possible to make use of the concept of the effective quantum number n*, 
determined from the condition (Refs. 68, 70): 

2 2  

n rn2 = rH -Ti. (10.20) 

where I,1 is the binding energy of the level determined by the quantum numbers n, 1; IH = 13.56 ev 
is the ionization potential of a hydrogen atom; and, z = r + 1 is the charge of the atomic remainder 
(z = 1 for neutral atoms, z = 2 for singly charged ions, etc.). The difference n - n* = p, called the 
quantum defect, tends toward zero as the levels rise,  the upper levels becoming hydrogen-like. 

In the works of L. M. Biberman and associates  (Refs. 64, 65, 71, 72), formulas are derived 
which take into account the quantum defect of actual levels of complex atoms, and which make i t  
possible for the coefficients of recombination and ionization to be found. In the work of Burgess 

'Therefore, in particular, for nitrogen and oxygen, in the case of which to the main level there 
corresponds the quantum number n = 2, summation in formula (10.18), and in those similar to i t ,  
is actually carried out not along n, but along n*, starting with n* = 1. 
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and Seaton (Ref. 70), the general formula of the photoionization cross sections of complex atoms, 
as well as numerous examples of i ts  application is cited. 

The formula of the coefficient of recombination with ionization for complex atoms has  the 
form of 

03 

(10.21) 

where the frequency v is determined by the energy of the recombining electron (hv = mv2/2), 
u' = hv'/kT, v' = v, if v 5 vg and v' = vg; if v 2 vg; where vg is the frequency corresponding to  the 
lowest excited s ta te  ng, from which integration commences (concerning the selection of ng and vg, 
see Ref. 71). 

The distinction from hydrogen-likeness is expressed by the function &v, T), which has  a 
varying course for various atoms and ions (Ref. 71). For oxygen and nitrogen atoms C(v, T) < 1 
does not depend on temperature and diminishes almost linearly with v (when v 5 1015 sec-I). But 
for various oxygen ions the course of &I/) varies considerably, i t  being possible for this value to 
be greater or l e s s  than unity (Ref. 72). However, with an increase in ion multiplicity, the course 
of c(v) becomes smoother, approaching the straight line 4 = 1; this is explained by the fact that the 
levels of ions of high multiplicity approach those of hydrogen-like ones even more. 

At the high temperatures in air that occur in shock waves in front of a flying meteorite (T = 

(5-20) . 1040K), the first ionizations take place fairly rapidly, and do not make much of a contri- 
bution to heat capacity; and the recombination of ions of low multiplicity is negligibly sma l l .  
Therefore, in the problem a t  hand the use of a precise formula (10.21) is not justified by necessity, 
and it is possible everywhere to assume 6 = 1. Possible errors for ions 01-0111 partially compen- 
sa t e  for each other, s ince the difference E -  1 for these ions has the opposite sign. 

Therefore, for computing recombination with radiation we shall  make use of formulas (10.13) 
and (10.14). 

With regard to ionization and triple recombination, the application of formulas (lO.lO), (10.15) 
and (10.18) to complex atoms should also not lead to great errors (Ref. 64). However, into formula 
(10.10) it is necessary to introduce the multiplier r,, taking into account the multiplicity of atoms: 

(10.22) 

I 

1 where U, is the sum with respect to the s ta tes .  

'The necessity for introducing the multiplier r, into formula ( l O . l O ) ,  as well as into some formulas 
in Section9, stems from the fact that into these formulas enter the statist ical  weights of the terms 
corresponding to  the given levels. For complex terms these weights must be multiplied by -rr. 
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Figures 22 and 23 show the values of the coefficients of ionization (from all levels) and 
triple recombination, calculated for the T, = (1-30) . lo4 degrees range of electron temperatures. 

Study of Figure 22 shows that Z, strongly depends not only on T,, but a l so  on ne, whereas 
the coefficients of ionization from the basic level (Table 12, Figure 18) do not depend on ne. 
Here once again the role of the upper levels is demonstrated; and, since their number is deter- 
mined by electron density, the dependence of the coefficients Z, and ne must manifest itself. 

Also of interest is the dependence of Z, on the ionization multiplicity r for large instances 
of T. Whereas, for s m a l l  instances of T the coefficients Z, diminish in a regular manner as the 
ionization multiplicity increases, when Te- 3 . lo5  a characteristic maximum of Z, becomes 
apparent for which r = 3. Formally, this  is explained by the fact that the product u:ee-ul has a 
maximum when u, = 2, i.e., when I, = 2kT,, this being effectuated only for large instances of T, 
(usually u, > 2). The physical sense  of this phenomenon is clear from Figure 16, s ince the ioni- 
zation cross section has a maximum a t  some value of v. 

For some values of T,, ne (for instance, when T, = 3 . lo5, ne = lo2'), the value of Z, deter- 
mined according to formula (10.10) is found to be l e s s  than the coefficient of ionization Z l . l  from 

! 
,' 

Figure 22. Coefficients of ionization from all levels. 
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Figure 23. Coefficients of triple recombination 
for single-charge ions. 

the basic level found from formula (10.4). Here the effect is felt of the difference in the approxi- 
mations used, s ince (10.4) has as i t s  basis the approximation of Thompson, whereas the approxi- 
mation of Bethe-Born serves  as the basis  for (10.10). However, the divergence between them is 
not great. 

With regard to photoionization, it should be recalled that photoionization is determined not by 
the external radiation field, but by the radiation originating precisely on the spot, within the shock 
wave, due to acts of photorecombination. When ne > lo", i t s  role is infinitesimally small in com- 
parison to ionization by electron impact. When 10I6<n, < lo", i t  may be assumed that the number 
of ac ts  of photoionization and recombination with radiation per unit of time per unit of volume are 
equal to one another. For ne < 1 O I 6  more complete investigation is necessary (see,  for instance, 
Ref. 124). 

The coefficients Zr, C:, and C:, found according to the formulas of this section, have been 
used in the solution of the basic system of equations of ionization kinetics (9.27). 

Section 11. Ionization Relaxation Time 

Let u s  now consider the sequence and time of the various relaxation processes in the ioniza- 
tion stage. This is first a process of energy exchange between ion and electron gas ,  bringing 
about an equalization of their temperatures (we designate the relaxation time by rei). Furthermore, 
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since the second ionization s tar ts  in practice after the first ionization is completed, etc. (Ref. 
42), i t  is possible to  consider separately the times of completion of each stage of ionization (r,, 
r2, . . ., r6); and, finally, the overall time for the attainment of ionization equilibrium ~ i .  Depending 
on the value of the equilibrium stage of ionization xeq = ae1/2, the time r ,  may assume different 
values, in particular 

1' 
when xeq = 1 
when xeq = 2 

Ti = 7 

Ti = T I  f rz ,  
ri  = r1 -+ r2 + r3,  etc. when xeq = 3 

Obviously, when xeq < r, the r-th ionization does not proceed to the end. 

In order to obtain the values of T, (r = 1, 2, . . ., 6), we use the equation of ionization kinetics 
obtained from (9.23): 

dne - 1 
- _  dt n,n,-,Z, - nen,Cr = n e - .  

'r 
(11.1) 

The coefficients of ionization Z, and of recombination C, are determined according to the 
formulas of Section 10. For a given concentration of atoms, n,, in accordance with what has  been 
said above, n, z n r - ,  +- n,. It is expedient to select  the relationship between n,-l and n, on the 
basis of the following considerations. 

A graph of the concentration change of each ion component, n,, can be well represented by a 
Gaussian curve. The greatest rate of ionization is attained when n,-l = n, = nJ2, and the curve 
has an inflection point. The rate of ionization a t  this point is equal to 

(11.2) 

Let us replace dne/dt by the value dn,/dt, which is almost equal to it,  and divide both parts 
of equation (11.2) by n,. W e  obtain 

(11.3) 

This value is equal to the tangent of the angle of inclination of the curve a t  the inflection point. 
Using the known properties of a Gaussian curve, from (11.1.) and (11.3) we obtain 

(11.4) 

where the values of Z, and C, are  taken for T, corresponding to  yr = Y , - ~  = 0.5. 
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For determination of the time rei, we use an expression obtained by Spitzer (Ref. 57), 

(11.5) 

This expression has  been derived for any two groups of particles ("field" and "test"). In our 
case ,  for electrons ze = 1, for ions z; F y r .  Considering that on the average for air mi  = 

2.6 - 104m,, we may disregard the second term in the brackets. Besides, we make the substitu- 
tion L = 2InA. After this, formula (11.5) takes the form 

The time for the establishment of a Maxwell distribution 
cording to Spitzer, equal to 

(1 1.6) 

in each group of particles i s ,  ac- 

(11.7) 

If the times rc are designated rii and r e ,  for ions and electrons, respectively, i t  follows from 
formulas (11.6) and (11.7) that in air 

rei = 84 rii (ions), 
rei  = 1.36 lo4 re ,  (electrons). 

We now compare the times rr and rei. It is first necessary to  make one remark. All the re- 
laxation times considered here do not generally constitute the finite completion times of a given 
process, but are merely characteristic times determined by the s ta te  of ion-electron gas a t  a given 
moment. The sense  of r, is determined by formula (ll .l),  while the sense  of rei is determined by 
the analogous expression (Ref. 57): 

dT,  T i - T e  
- 
dt 'ei (11.8) 

The basic parameter determining the times rr and rei is the electron temperature T,. Tables 
14 and 15 show the values of rei and of the products narr for various instances of T,, the second 
argument in Table 14 being niz;, while in Table 15 the second argument is ne (for r = 1.2). 

In order to  obtain the direct values of rr from Table 15, i t  is necessary to divide the numbers 
cited in i t  by n,. It is not difficult to become convinced that the values of rr for high temperature 
depend weakly on r and T,, and that rr and rei are values of the same order of magnitude. 
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3.4:102 
4.4.10' 
1,6.104 
2.1.104 
7,2- 105 
9.4.10' 
3.4.10' 
4.4.10' 

Table 14 
Relaxation .Time re i ,  sec 

T, . iO-a 
~~ 

10 I 20 I 40 1 80 I 160 

2.0.10. 
1 ,4*  IO' 
9.6.109 
6.9.105 
4.3.10" 
3,1-10') 
2.0.107 
1.4.107 

I 

7.8.10' 
3.5*106 
3.0.105 
1:8.10' 
1,6.107 
7,4.1Os 
8,O. I O 8  
2,5*1U11 

1 1  

ni z? 

9,7.102 
4,1*1CP 
4.7-104 
210-106 
2,0*106 
8,7 * 10' 
9.7 * 10' 
4.1.108 

1014 

1 0" 

1018 

1020 

1 .2.10-7 

2 A. 10-9 
4.4. l0- lo 

1.6.10-' 

- 
- 
- 

1 
2 
1 
2 
1 
2 
1 
2 

6.9 * 

8.1.10-8 
1,0.10-8 
1 .3 .  IO-' 
2 .o. 10-10 
4.4.10-lo 

- 

2 , l  . I O 9  
- 

1 ~ 6. IO1' 
- 
- 
- 
- 
- 

Table 15 
The Product narr 

5.1 - 10' 
2.6.109 
2.6.107 
1,5.10" 

. 1 ,o. 109 
- 
- 
- 

1 ~ 6. IO-' 
2.0. IO-' 
2 , 4  IO-' 
2,9.10-9 
3,9 *IO-'' 
6,O * 

1 ,3. IO-l ' 

4.2 * IO-' 
4.8. IO-' 
5.5 *IO- '  
6.9-10 ' 
8.7 * IO-"' 
1.2. IO-! 
1.8. IO-' 

Section 12. Results of Calculations of Ionization Kinetics 
and Energy Exchange within the Shock-Wave Front 

Calculations based on the solution of a system of ionization kinetics equations, which yield 
a distribution of the degrees of ionization and of the temperatures Te and Ti in a.shock wave, are 
very few in number. 

In 1954, S. B. Pikel'ner (Ref. 56) published a ser ies  of such calculations for the formative 
stages of plasma consisting of hydrogen with an admixture of 20 percent helium. In this case 
energy expenditures were important for the excitation of atoms with subsequent deexcitation. 
However, the obtained qualitative pattern was a very characteristic one (Figure 24). 

In 1957, J. Bond (Ref. 107) calculated the structure of a shock wave in argon for velocities 
of 5-6 km/sec, and an  initial pressure of 59.3 c m  Hg. In his work are given graphs of Ti, x, p:, 

' !  
. 
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Figure 24. Variation of Ti, T,, x behind the front of a shock wave in formative 
s tages  of plasma (according to S. B. Pikel‘ner). 

a - temperature Ti, = 400,000’; b - Ti, = 850,OOOO 

p:, u in a function of the distance from the wave front (Figure 25). His calculations were based 
on the principle of detailed balancing. 

At almost the s a m e  time, Petschek and Bryon (1957, Ref. 54) carried out analogous calcula- 
tions for argon, on the basis  of a balance between the energy obtained by electrons from ions, and 
the energy expended on ionization and the increase of electron temperature (they disregarded re- 
combination). 

Their results are represented in a form l e s s  convenient for survey, but they yield almost all 
the data of interest to us. The basic argument is enthalpy corresponding to  the velocity of the 
shock wave (Figure 26). On the graph are plotted lines of constant enthalpy (from left to right) 
and isolines of the degree of ionization (from the top downward). From each initial value of the 
ion temperature Ti,, it is possible to trace the change of T, and x in the function Ti (or of T, and 
Ti in the function x), preceding along the line of equal enthalpy. However, the graph of Petschek 
and Byron does not permit these processes to be traced in time (although this may be done without 
difficulty, according to the formulas of their work). 

Finally, a ser ies  of calculations for air based upon the calculations of Section 9 has been 
carried out recently by the author of this book (Figures 27-29). 

The overall course of the three principal variables, Ti, T,, and x, may be provisionally 
divided into three sectors. In the  first sector Ti diminishes slowly, and Te and x increase equally 
as slow. In the second sector comes the so-called “avalanche ionization,N i.e., T, and x increase 
rapidly, Ti falls (Figures 24, 25, 27-29). 
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Figure 25. The course of Ti and x behind the front 

. of a shock wave in argon (according to Bond). 
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Figure 26. Diagram of change of T, and x in the function Ti for 
various values of Ti, (according to  Petschek and Byron). 

Lines  of constant enthalpy, corresponding t o  the indicated val- 
ues  of Ti,, yield the pattern of change of T, and x in the move- 
ment of a particle behind the shock wave. 
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. 

Figure 27. Change of Ti, T, and x in air when 
Ti, = 50,000', x,, = lo-'. 

The third sector of temperature and ionization change corresponds to a comparatively slow 
evening off of T, and Ti,  and to the approach of the degree of ionization to the equilibrium value. 

Let u s  examine in greater detail the change in the electron temperature T,. In the first sec- 
tor, T, increases because of the transfer of ion energy to electrons. If the amplitude of the shock 
wave (and, consequently, the initial T, as well) is small, ionization efficiency is a t  first small 
and T, increases slowly, until the increase of x, i.e., of the number of ions, accelerates the 
process of energy transfer to  electrons, this effecting a rapid growth of T,. But the energy ex- 
penditure for ionization is intensified with the growth of T,, which, passing through a maximum, 
begins to diminish together with Ti. Such a pattern was obtained by S. B. Pikel'ner for the 
hydrogen-helium formative s tages  of plasma (Figure 24); the s a m e  pattern was obtained by 
Petschek and Byron for argon when Ti,  5 35,000' (the lines of constant enthalpy in Figure 26 have 
a maximum with respect to the argument T,). 

As the amplitude of the shock wave increases, the difference between the ion and electron 
temperatures becomes so great that despite the energy expenditures for ionization, the electrons 
continue to acquire sufficient energy from the ions for the continuation of the growth of T,. In 
this case T, does not have a maximum. Such a pattern for argon has been registered by Petschek 
and Byron when Ti, 2 40,000'. Unfortunately, Bond does not c i te  data concerning T,, but the 
nature of the change of Ti and x is the same as in the other works. 
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Figure 28. Change of Ti,  T, and x in air when 
Ti, = 580,000°, X, = lo-'. 

Let u s  consider the results of our calculations for air. The calculations were made on the 
"Strela-3'' electronic computer of the Computer Center of the Academy of Sciences, USSR. The 
programs were compiled by A. N. Chigorin, to whom the author expresses deep gratitude for this 
work, as well as for carrying out the calculations themselves. 

First ,  the calculations showed that of the two schemes considered in  Section 9, only Scheme 
I1 leads to correct results. The expenditure of energy for ionization in Scheme I is so great that 
the electron temperature scarcely rises.  It is a l so  important t o  take into account the differences 
of complex atoms from hydrogen-likeness (for hydrogen-like atoms the course of T, and T i  is 
steeper). 

Henceforth, a l l  calculations were carried out in accordance with Scheme I1 (Boltzmann dis- 
tribution, level by level) . W e  took 10'" and 10" cm-3 as the initial values of n,; this corresponds 
to altitudes of approximately 15 and 45 km (we assume here that compression in the shock wave is 
equal to 10; refinement of this value will have little effect on altitude values). 

The initial ion temperatures were taken as 50,000°, 580,000° and 2,000,000°. In their physi- 
cal sense  they correspond to  the temperatures Tf  from Section 7, i.e., to the temperatures a t  the 
wave front after completion of dissociation. As can be seen from Table 8 ,  these values of Tf 
correspond to  meteorite velocities, respectively, of 18 km/sec, 47-57 km/sec, and over 72 km/sec 
(larger numbers correspond to  an  altitude of 45 km, smaller ones correspond to 15 km). The initial 
degree of ionization x was always assumed equal to 0.01. This value is to  a certain extent an 
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Figure 29. Change of Ti, T, in air when 
Ti, = 2,000,000', x, = lo-', n, = 10". 

arbitrary one, due to the indeterminacy of the mechanism of the initial stage of ionization. The 
initial value of the electron temperature Teo was found from a condition based on the principle of 
detailed balancing: 

-- - 0. dTe 
n, dt  (12.1) 

Imprecision in the evaluation of the initial value T,, has almost no effect on the results, 
since already in the first s tages  of calculation, T, assumes correct values that correspond to the 
principle of detailed balancing. 

As can be seen from Figure 27, the establishment of an equilibrium state  behind the front of 
a shock wave at  low altitude (- 15 km) is attained somewhat rapidly-over a time of the order of 
3 - lo-' sec-even a t  comparatively small shock-wave amplitude (v, = 16 km/sec, Ti, = 50,000', 
T,, = 12,400'). For high amplitude waves, v, = 47 km/sec, Ti, = 580,000', T,, = 15,4000) equilib- 
rium is established even more rapidly-over a time of the order of 5 lO-'Osec. Taking into ac- 
count the flow velocity behind the front v2, we obtain a wave-front width, or more precisely, the 
width of the sector of the establishment of equilibrium for the considered examples, of 5 - 
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and 2 * lo-' cm. These values are  in good agreement with the calculations of Bond (Ref. 107) for 
the smaller initial velocities and amplitudes. Thus, the front of the shock wave is very thin, and 
the gas  in the compressed layer may be considered as being in equilibrium. 

At high altitudes (-45 km), as can be seen from Figure 27, the duration of the establishment 
of equilibrium conditions increases by an order of magnitude and more (when v, = 17 km/sec, 
Ti, = 50,000°, and T,, = 10,lOOo, this time amounts to 6 - lo-' sec). Nevertheless, the width of 
the shock-wave front here is measured in fractions of a millimeter. 

At even higher altitudes (-80 km), under conditions of highly rarefied air, the rate of ioniza- 

' 

tion is considerably lower and the width of the shock front is much greater, and (considering the 
action of radiation) may be measured in centimeters. In the movement of not very large bodies in 
the atmosphere, the nonequilibrium region may extend to  the very body of the meteorite. 

Section 13. Temperature Distribution within the Shock Wave 

To now we have been considering the change of ionization and temperature along the axis of 
a shock wave originating in the flow of a hypersonic stream of gas about a body. Considering the 
shapes of the body and wave to be axially symmetrical, let  u s  consider the distribution of the 
s a m e  values, as well as of pressure and density, a t  the intersection of the wave by a plane pass- 
ing through i t s  axis.  

On the basis of the theory of oblique shock waves (Ref. 49), far from the axis,  where the on- 
coming stream meets the wave front a t  an angle +, a stream line forms with the front the angle 
a, bound to q5 by the relationship 

(13.1) 

Designating by u the velocity component v which is normal to the front, we shall  have the follow- 
ing relationships: 

flul = p,u,; u, = v2 s in  a; 
u,  = v, s in  4. 

Hence the density ratio 

(13.2) 

(13.3) 
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On the basis of (7.2) and (13.3), the density ratio is equal to 

- 
p & L 1 + - 2 r  (Ma2 sin2q - 1). (13.4) 

Pl r + l  

And, finally, the ratio of the temperatures a t  the front of a shock wave are equal to the prod- 
uct of the ratios expressed by formulas (13.3) and (13.4): 

We introduce the designation 

M = Ma sin 4. 

Then 

(13.5) 

(13.6) 

(13.5a) 

If M2 >> 1, formula (13.5a) assumes the simple form of 

-. 
T = (13.7) 2 

Formula (13.7) is applicable when M > 10. However, in such strong waves dissociation and ioni- 
zation begin to have a substantial influence, and in place of T, in formula (13.5), there should 
stand T f  or T,. On the basis of (7.30), 

(13.8) 5 5 
TI TI 12 Tf = B ( ( r  - 1) (l-Q&) M2;  5 = -(y - 1) (1 - Qi) M". 

The values of M in the function Ma and q5 are shown in Table 16. Table 17 shows the ratios 
of temperatures, pressures and densities in the function M for y = 1.25. A transition to other 
instances of y has little effect on p and more on p and 2.. 

Thus, on the "flanks" of a shock wave the intensity of the temperature and pressure jump 
diminishes, first slowly and then ever more rapidly. In this connection the initial conditions of 
the ionization kinetics equations (Section 9) a l so  change, as does the time sca le  entering into 
these equations. 

, 



E 

5,21 
8.69 

13.0 
17.4 
21.7 
26,2 
30.4 
34.7 
39.1 
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2.61 
4,36 
6.54 
8.71 

10,9 
13, l  
15.2 
17:4 
19.6 

Table 16 

15.0 
25,O 

50,O 
62.5 
75.0 
87.5 

100.0 
112.5 

37;s 

i: 

10,25 
17.1 

31.2 
42,7 
51.3 
59.8 
G8.4 
77,O 

25.6 

30 
50 
75 

100 
125 
150 
175 
2QO 
225 

28.2 
4G.9 
70.4 
03.8 

117.2 
140.7 
164,I 
187.6 
211,O 

30,O 
50.0. 
75 -0 

100.0 
125:o 
150.0 
175.0 
200.0 
225.0 

26.0 23.0 
43.0 3S.3 
G4,9. 57.4  
86.5 76.6 

105.2 95.7 
129.8 115.C 
151,4 138.C 
173.0 153.2 
194.Gl 172,4 

29.5 
49.2 
73,8 
98.7 

123,O 
147;G 
?72.2 
196.8 
221.4 

M 

P 1:OO 
;; 1.00 
M T 1.00 

M / 1 1 2  
3.00 
4.33 
%,44 

4,8 6.0 6.8 8.3 8.8 
'3.89 17.7 27.7 111 444 
2.07 2.94 4 ,OG 513,3 50.1 

9,0 1 9,o 9.0 
2,78.103 l . l l . 1 0 4  4.44.104 
3.09.102 1.24*103 4.93*103 

10.3 
32,O 
48, 2 
64.3 
s0.3 
9615 

112,s 
123.5 
144 ~ 5 

Table 17 

The flow velocity of various relaxation processes is a function of the number of particle col- 
lisions. The latter i s ,  in i t s  turn, proportional to pvdt = pdx', where dx' is read off along the path 
of movement of the particles of the flow behind the shock-wave front. 

On the basis  of (13.2) and (13.3) 

dt ax' = VI- 
cos cp 
cos 0 (13.9) 

Using these stream line relationships and equations (Section 5) ,  i t  is possible to  find the 
surfaces connecting points with equal ionization and temperature. As the distance from the point 
of full deceleration increases, these surfaces will press ever more closely to the surface of the 
body. 

The qualitative pattern of the distribution of ion temperature T i  in a shock wave will be as 
follows (Figure 30a). The hottest region adjoins a point on the wave axis, and isothermal sur- 
faces surround it,  these surfaces being second-order curves in cross section. Further, the shape 
of the isotherms changes sharply: they have their origin at the front of the shock wave, and then 
they bend along the stream. In some point on the wave front the temperature becomes insufficient 
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a b 

Figure 30. Shock wave temperature distribution. 

a - ion; b - electron temperature 

for the onset of ionization (and subsequently, of dissociation as well), although ions may get into 
these "cold" regions due to diffusion. 

The distribution of T, (Figure 30b) a t  the "nose" of the shock wave at  high altitudes (in 
rarefied air) is of a somewhat different nature, since in this case Te increases somewhat slowly 
along the stream, either attaining a maximum or leveling from Ti. Therefore, the value T, max 

will be reached somewhere on the wave axis between the front and the point of full deceleration. 
The isotherms of T, in cross section have here the shape of lunes. In denser air strata these 
lunes flatten out in the narrow region of the front itself. Further along the wave front there is a 
transition to the very lowest instances of T,, and further st i l l ,  the difference between T, and Ti 
loses i ts  sense,  s ince the temperature there is insufficient to maintain ionization. 

Thus, in the head part of a shock wave it is possible to distinguish three regions of change 
of the ion temperature: a hot region immediately behind the wave front, a region of rapid temper- 
ature fall (avalanche ionization), and a region of established equilibrium. 

But since the shock-wave separation distance depends mainly on the dimensions of the body, 
whereas the time for the establishment of ionization equilibrium and the corresponding distance 
depend (at  a given height) only on the amplitude of the shock wave, in the shock waves of large 
meteorites there is time for equilibrium to be established, whereas it will not be attained in the 
case of smaller bodies. In addition, a t  high altitudes equilibrium ionization in a shock wave is 
usually not attained because of low air density and the s m a l l  number of particle collisions. 

Determination of the pattern of distribution of gasdynamic and thermodynamic parameters in a 
shock wave (including ionization) makes i t  possible to approach the solution of the problem of 
thermal action of the shock wave on the meteorite body. This problem will be considered in Chap- 
ter 111. The processes taking place in the flow field a t  a distance from the head portion of the 

. -  
A 
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wave (including the formation of secondary waves of compression and rarefication, ion recombina- 
tion and trail formation), are  not considered here since they have almost no influence on heat 
exchange. 



88 

CHAPTER 111. HEAT TRANSFER TO THE METEORITE BODY 

Section 14. Radiation Flux 

If we are given a temperature and density distribution in a compressed layer, i t  is possible 
to calculate the radiation flux for any elementary area on the body of the meteorite. However, be- 
fore deriving the equations for the radiation flux, we shall  make some general remarks. 

The conditions in a shock wave formed in front of a flying meteorite are comparable with the 
conditions in stellar photospheres. Actually, the density of the photosphere a t  the edge of the 
sun has  an order of magnitude of lo-' g/cm3 and increases toward the center, attaining a t  a depth 
of 120,000 km values of lo-* g/cm3, which corresponds to the density in the compressed layer of a 
shock wave in air a t  the surface of the earth. The temperature of the sun a t  the same depth inter- 
val increases from 6,OOOO to 500,000°, which again corresponds closely to  the temperature interval 
in shock waves. 

However, in considering the radiant transfer in a shock wave, a number of substantial differ- 
ences from celestial photospheres shou'ld a lso be taken into account. Thus, in celestial  photo- 
spheres the temperature increases toward the center and radiant heat transfer is directed outwards. 
In a shock wave the temperature distribution is of a more complex nature, the hottest regions being 
adjacent to the wave front. The radiant heat transfer of interest to us is directed inward toward 
the meteorite body. 

The nature of radiation in a shock wave is the s a m e  as in stellar photospheres, Le., i t  in- 
cludes recombination radiation (free-bound trans.itions) and bremsstrahlung (free-free transitions). 
The absorption of radiation is brought about by inverse processes. The role of radiation and ab- 
sorption in lines (bound-bound transitions) is negligibly small due to the small width of the lines. 
However, the relative role of linear radiation increases a t  relatively low temperatures (T 5 10,OOOo), 

'It is reasonable that there will a l so  be a radiation flux outwards, bringing about deexcitation of 
the shock wave. This question has  been studied in detail by Ya. B. Zel'dovich, A. S. Kompaneyets 
and Yu. P. Rayzer (Ref. 73), and will not be considered by us. 

. .m 
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as can be seen from general consideration and the detailed analysis of theoretical and experimen- 
tal data carried out by Mayerott (Ref. 74). 

It is of interest to make a general comparison of the conditions in a shock wave and in the 
photosphere, as well as in the solar corona and in  the formative s tages  of plasma (Table 18). 

Table 18 
Comparison of the Conditions in Formative Stages of Plasma, 

the Solar Corona, the Photosphere, and a Shock Wave in Air 

Formative stage 
of plasma 

1. Radiationforms out- 
s ide the formative 
stage of plasma 

2. The dilution factor 
is infinitesimal 

3. The radiation tem- 
perature To  is high 
(-105) 

4. The electron tem- 
perature is high, 
but is lower than 
To(-n 10') 

5. Electron and ion 
temperatures equal 

6.Given To, ne, find 

7. T, can be checked 
on the basis  of 
spectrum (state of 
ionization, ion com- 
position) 

Corona 

1. Radiation forms out- 
side the corona 

2. The dilution factor 
is the order of 
0.1-0.5 

3. The radiation tem- 
perature is low 
(-5. 103) 

4. The electron tem- 
perature is very 
high (-1060) 

5. Electron and ion 
temperatures of the 
s a m e  order 

6.Given To, ne, find 
Te 

7. T, can be checked 
by various methods 
(spectrum, radio 
emission) 

Photosphere 

1. Radiation forms within 
the photosphere itself 

2. The dilution factor is 
equal to 0.5-1 

3. The radiation temper- 
ature is low (-5. IO3) 

4. The electron temper- 
ature is low (-5. IO3) 

5. Electron and ion tem- 
peratures equal 

6. To, ne, T, are deter- 
mined independently 

7. See No. 6 

Shock wave 

~ 

1. Radiation forms within 
the wave itself 

2. The dilution factor is 
equal to 1 

3. The radiation temper- 
ature is of the order of 
104-105 

4. The electron temper- 
ature is medium 
(- I 0'- 105) 

5. Electron and ion tem- 
peratures not equal 
(Te < Ti)  

6. Given Te,  Ti ,  ne, find 
TO 

7. To  cannot be reliably 
checked on the basis 
of spectrum, method 
has not been worked 
out 
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Table 18 (Continued) 

Formative s tage 
of plasma 

Corona 
! 

8. Ionization effected 
by radiation 

~ _ _  - 

9. Recombination pro- 
ceeds primarily with 
radiation 

~- 

10. Deexcitation great 
(fluorescence, radi- 
ation in forbidden 
lines) 

8. Ionization effected 
both by radiation 
and electron colli- 
sion (heavy ele- 
ments) 

9. Recombination pro- 
ceeds primarily with 
radiation 

10. Deexcitation great 
(radiation in for- 
bidden lines) 

Photosphere 

8. Ionization effected 
primarily by radiation 

9. Recombination pro- 
ceeds primarily with 
radiation, influence of 
triple collisions is 
small 

LO. Deexcitation great a t  
surface and rapidly 
diminishes with depth 

Shock Wave 

8. Ionization effected 
primarily by electron 
collision 

9. Recombination pro- 
ceeds primarily with 
triple collisions (when 
n, > 10l6) 

10. Radiation suppressed, 
deexcitation low (when 
n, > 10" 

In calculations of the radiation flux in stellar photospheres, there frequently enters into the 
equations the radiation temperature To, not equal to any of the kinetic temperatures Ti,  T,. In de- 
termining To it is usually assumed that the spectral density of radiation u, is usually described 
by Planck's formula (Ref. 60, 61, 108). However, the radiation in a shock wave is generally not 
Planck radiation. 

In order to solve the question of whether u, is subject to Planck's law or not, it is neces- 
sary to know the relationship between the path length of the radiation of frequency ,-I,, and the 
characteristic dimension of the region under consideration, D. In those frequencies where 1, << D, 
there is established a Planck distribution of the .radiation density with respect to frequency, and 
if this condition is valid for the basic frequency range, the radiation may be considered to be 
Planck radiation. If, on the other hand, 1, >> D, we shal l  be dealing with volume radiation, the 
spectral distribution of which will depend on the radiant emissivity of the gas  in the correspond- 
ing frequencies. 

, 

In order to determine whether the condition 1, << D is satisfied for the basic frequency range, 
it is necessary to find vg, the threshold frequency of recombination determined by the condition 
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hv, = AIr,n (14.1) 

I 

(AIr,n is the binding energy of the level a t  which the recombination takes place). W e  introduce 
the mean threshold frequency Y,; in order to do this we average level by level, taking into account 
the recombination coefficients for each level and assuming the levels to be hydrogen-like. We 
obtain 

where C: is the overall coefficient of recombination with radiation, yielded by formula (10.13), and 
Ci,n are the corresponding coefficients for the levels. Taking their expressions according to 
Seaton (Ref. 68), we obtain 

For u,  2 4 a sufficient approximation is yielded by the expression 

The values of the correction multiplier in the right-hand parts of (14.3) and (14.4) are shown 
below: 

U l  0.5 1 2 3 4 5 10 15 

Correction multiplier 0.538 0.581 0.665 0.719 0.767 0.804 0.900 0.933 

(14.3) 

(14.4) 

Thus, for instance, for T, = 23,OOOO the boundary wavelength corresponding to is is equal to 
1,000 A. 

As has been shown in Table 18 (No. 7), it was heretofore impossible to rely on the direct 
determination even of the form of the function T,(v) on the basis  of the spectra of bright meteors 
and bodies. The fact of the matter is that the luminescence directly registered'by instruments is 
not the luminescence of the shock wave, the radiation of which is usually suppressed, but consti- 
tutes the luminescence of the heated zone before the front of the shock wave (Ref. 106). The 
spectral composition of this luminescence is entirely different than in a shock wave. 

As far as the electron temperature T, is concerned, in subsequent calculations it must be. 
recalled that the energy of recombination radiation is determined by the mean velocity of electrons 
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with respect to ions. But s ince Ti and T, are of one order of magnitude, while mi >> me, i t  fol- 
lows that vi << v,; ions may be considered immobile, and the "electron-ion" temperature, T,; = T,. 

In order to gain a general conception of the conditions of radiant transfer in a shock wave, i t  
is necessary to compute the value of the mean radiation path. A simple method of computing mean 
radiation paths and absorption coefficients in ionized gases  a t  high temperatures has been devel- 
oped by Yu. P. Rayzer (Ref. 75). 

The mean absorption coefficient per unit of volume x1 and the effective mean radiation path 
1 , conesponding to it (characterizing the radiant emissivity) are  determined by the expression 

where 

(14.5) 

(14.6) 

Integrating, and then summing within the limits of the various degrees of ionization, r, Yu. P. 
Rayzer obtained the following approximate expression: 

where n, is the overall concentration of atoms and ions, x = n,/n,. 

(14.7) 

(14.8) 

The approximate dependence of 1, on T, and n, has the form 

(14.9) 1 3 5  -1.68 I1 -Te*  n, . 
On the basis  of data cited in Ref. 75, we compile the following table for the values of 1, for 

various densities and temperatures (Table 19). 

, 

The method of Yu. P. Rayzer is sufficiently precise for approximate evaluations, although it  
cannot be recommended for precise calculations in application to complex atoms. In the latter 
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5.0 
12.5 
32 
79 

Table 19 
Values of l,, c m  

2.5 *IO-' 
6.3 * IO-' 
1.6 * IO-' 

- 4.0*10-' 
I 

Te 

25 OOO" 
50 OOO 

100 000 
200 OOO 

1,3*10' 
3.1-1@ 
7.9 - I O 4  
2.0.105 

case it  is necessary to use  the calculation method worked out by L. M. Biberman, G. E. Norman 
and K. N. Ul'yanov (Refs. 71, 72), based on the quantum-defect method developed by Seaton and 
Burgess (Refs. 68, 70). This absorption coefficient, calculated for one atom, is equal to  

where 

16na eak c1 = 3 - 6 3  - ch4 = O.89.1Oz4 cmZ/sec3  deg, 

(1 4.10) 

(14.11) 

Entering into the expression (14.10) are the already familiar multipliers l? and 6, the multi- 
plier r determining the correction for the multiplicity and shifted terms of complex atoms, while 
&, T,) determines the correction for the quantum defect (see Section 10). The introduction of 
these multipliers increases the values of x y  almost in all  cases (only for the ion 0111 is < l), 
but not more than by a factor of 2 or 3. The values of 1, cited in Table 19 are diminished by the 
same factor. 

The question of radiation paths in hot air is a l so  considered in the work of V. N. Zhigulev, 
Ye. A. Romishevskiy and V. K. Vertushkin (Ref. 76). In calculating the absorption coefficient of 
atoms in the fundamental s ta te ,  they use the precise formula of Seatbn (Ref. 68), while for excited 
s ta tes ,  Kramers' formula is used with the introduction of correction multipliers that take into 
account the difference of the energy level and their s ta t is t ical  weights from the hydrogen-like 
levels corresponding to them. For the 10,000-20,000°K temperature range, values have been ob- 
tained in Ref. 76 that are  c lose in their order of magnitude to those cited in Table 19. 

Because the introduction of multipliers I' and 5 does not change the order of magnitude of 
the radiation-path lengths, we may use the data of Table 19 for general analysis. It becomes 

! 
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clear from an examination of this table that generally there can be three cases of the relationship 
between the radiation-path length 1, and the characteristic length, which we shal l  represent by the 
shock wave separation distance 6. Designating w = 6/1,, we shal l  have: 

for a, = loz6 
for n, = 10" 
for n, = 10''' 

w << 1, 
0 - 1, 
w >> 1. 

It is reasonable that these relationships depend on the dimensions of the meteorite body, but 
in principle this does not altet the situation. 

Ref. 76 deals with the influence of radiation on hypersonic flow about bodies when w << 1 
and w >> 1. First ,  there is obtained a reduction of temperature and pressure, and an increase of 
density in accordance with the shift along the surface of the body about which the flow takes 
place. Second, there is obtained the conventional diffusion scheme (diffusion approximation), the 
energy transfer having the nature of radiant heat transfer. This case is investigated in greater 
detail in Ref. 116. 

Let u s  now consider the more general case of w -  1 for the critical point, and try to find an 
approximate solution for it. Let u s  imagine (Figure 31) the cross  section of the front of a shock 
wave by a plane passing through the axis  of the wave (assuming the body and the surface of the 
front to be axially symmetrical). From the center of curvature of the body a t  the critical point we 
draw a sphere with the radius R, = Rb + 6 (Rb is the radius of the curvature of the body a t  the 
same point, 6 is the shock wave separation distance); we shal l  cal l  this the reference sphere. Our 
approximation consists of replacing the true surface of the shock-wave front with the reference 
sphere. In this manner we a t  the same time disregard the radiation of the regions located on the 

Figure 31. Determination of the thermal flux a t  the critical point. 
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"wings" of the shock wave between said shock wave and the reference sphere. However, as has  
been shown in Section 13, the temperature of the air a t  the wings and, consequently the radiation 
flux as well, diminishes sharply, and failure to take i t  into account will have little effect on the result. 

It is necessary for u s  to find the radiation flux q on the elementary area ds,  with the criti- 
cal  point in the center. We draw the "horizon line" of this area B,B,. Obviously, we are inter- 
ested in the radiation arriving from all of the directions for which the position angle 8 is confined 
within the limits 0 < 8 < n/2. W e  shall  henceforth assume the distribution of the radiation temper- 
ature T(x, 8 ) = T(r, $) t o  be given, shall  assume that the radiation does not alter this distribution, 
and shall disregard the temperature of the body and the distribution from i ts  surface, as well as 
the effect of radiation scattering and reflection. The solution of the problem may be obtained by 
the following two methods. 

First  method. We consider an  element of air, volume dV, with a m a s s  of dm = pdV, confined 
between two spherical surfaces and two planes passing through the wave axis. Since the problem 
is axially symmetrical, we may immediately assume the angle between the surfacesoto be equal t o  
277, i.e., we assume that the volume dV has the form of a hoop with a cross section of rdrdq5. 
Therefore, integration is performed along the azimuth, and the azimuth angle will no longer be of 
influence. The volume dV will be equal to 

dV = 2m2 s in  $dq5dr. (14.12) 

The quantity of energy dQ,, radiated by the volume dV per unit of time in an  elementary frequency 
interval, will be equal (Ref. 61) to 

dQ, = j,dmdo, (14.13) 

and, furthermore, 

j, = x',B,(T). (14.14) 

Here j, is the coefficient of radiation; X' , is  the absorption coefficient per unit of m a s s ;  B,(T) is 
the intensity of radiation of an  absolutely black body at  a temperature of T and a frequency of I/. 
The use of formula (14.14) is equivalent to the introduction of a hypothesis of local thermodynamic 
equilibrium for gas  on the shock wave. Further, the solid angle d o ,  a t  which the area d s  can be 
seen from the volume dV, is equal t o  

ds cos .4 do = - 
2 2  ' ( 14.15) 

where x is the distance between them. Substituting (14.12), (14.14) and (14.15) into (14.13), we 
obtain 
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dscos 6 dQY =x';B,p . 2 m 2  sin cp dcp dr ra. ( 14.1 6) 

Integrating with respect to frequencies and using the averaged absorption coefficient '57: we find 
the radiation flux dq from the volume dV per unit of volume of the area d s ,  with account taken of 
absorption on the way from dV to ds: 

As can easily be deduced from Figure 31, r s in  r$ = x s i n e ,  from which i t  follows that 

* 
X 

- x p d r  

dq = &B (x, 6) p-e sin 26dxd6. 

(14.17) 

(14.18) 

In order t o  obtain the full flux q, the expression (14.18) must be integrated with respect to 
the half-segment B ,OB,: 

X 

- s x p d x  

q = \ nB (3, 6) e xpdxsin 26 d 6 .  
L3 

We introduce the optical thickness 7, assuming that 

( 7  = 0 a t  the wave front, r = q, a t  the body). Then, instead of (14.19), we shal l  finally have 

q = nB (z, 6) e-(+i-+) sin 26 d 6  dz. S 
L3 

(14.1 9) 

(14.20) 

(14.21) 

The described method is, in particular (with insignificant alterations) presented by Koh (Ref. 
123), where, in addition: calculation formulas are given for computing the expression (14.21). 

Second method. We use radiant-transfer equations for an imaginary "star" with a radius of 
Rs, within which there is a hollow in the form of a sphere with a radius of Rb. Let us consider 
the radiation flux onto the area d s  on the surface of this sphere, taking into account the fact that 

.. .. ~~~ .... . . . 



97 

radiation within the hollow is equal to zero. The equation of radiant transfer for the spherical. 
symmetrical problem is written down in the following manner (Ref. 122): 

d l  sin 6 d I  
dr r d 6  

cos6----- - -;p [ I  ( r ,  6) - B ( r ,  6)l. (14.22) 

The solution of this  equation, according to Chandrasekar (Ref. 122) has  the form: 

where p is the shortest distance of a ray from the center of curvature, $ is the angle between the 
ray and the radius vector a t  the point (p cosec $, $). Since 

dx = p cosec' $d$, (14.24) 

we can, using (14.20), simplify (14.23), reducing it to the form of 

Since the radiation flux from the hemisphere per unit of area is equal to 

"!2 

q = 2n \ I (6) cos 6 sin 6 d6, 
0 

we obtain as a result 

x!2 i b  

q = \ 1 ad3 (z, 6) e-(rb-r)sin 2 6 d 6 d z ,  
0 0  

which is entirely analogous to the expression (14.21) obtained by the first method. 

On the basis of the above proposals 

nB(x, 8 1 = d T ( x ,  e)]' 

(14.25) 

(14.26) 

(14.27) 

(1 4.28) 

The local radiation temperature T(x, e), which should be substituted into formula (14.28), is 
not equal to T,. Discussion of the relationship between them is found in a number of works and 
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monographs (Refs. 60, 61, log), and is usually reduced to  the assertion that this relationship is of 
a rather complex nature, but under conditions of stellar photospheres, as well, apparently, as in a 

- gas discharge, T must be very close to T,. Under our conditions i t  must a l so  be assumed that 
T = T,. 

Le t  u s  now consider the case of w << 1 (volume radiation). In this case we consider the gas 
to be transparent, and, disregarding the exponential multiplier, obtain from (14.27) and (14.28) 

n/2 Sseca 

q = G 5 \ xpT4 sin26d6dx, 
0 0  

(1 4.29) 

i t  being always possible to substitute l/l, for r p  = zl. In the case of volume radiation i t  is con- 
venient to consider the recoil of radiation of unit volume in all directions, which is equal to 

where J is the mean intensity of equilibrium radiation a t  a given point, u is the radiation density. 

In Ref. 76 expressions have been derived separately for the energy of recombination radia- 
tion of an elementary volume for nitrogen and oxygen that are applicable for w << l ,  and in the 
10,OOOo _< T _< 20,000° range. Averaging the coefficients for air, we obtain the following expres- 
sion for E, which, taking (14.30) into account, may be substituted into formulas (14.27) and 
(14.29): 

= 2,.)0.10-"T-1/a + 7.22.10-"T1/a + 7.21 .10-32T3'*. (14.31) 

Finally, let  u s  go into the third case of w >> 1. This case has also been considered by 
V. N. Zhigulev, Ye. A. Romishevskiy and V. K. Vertushkin (Ref. 76). As a result of integrating 
the transfer equation, they obtained a formula analogous to (14.25) for radiation intensity a t  a 
frequency of v: 

R 
R - J x , d x '  

I ,=\e  B,x, ax. 
0 

(14.32) 

Expanding x 1  and w,B into Taylor series and effecting a number of simplifications, the 
authors of Ref. 76 obtained the following expression for I: 

(14.33) 

where R is the thickness of the layer whose radiation reaches khe body. 
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Considering I to depend neither on the frequency nor, in the given instance, on the direction 
(since a t  s m a l l  paths 1, radiation reaches the body only from the region immediately adjacent to 
it),  we obtain 

I. 

q = 771. (14.34) 

Of great significance is the question as to just what temperature should be substituted into 
formula (14.33). According to Ref. 76, this should be the temperature a t  the distance of R, which 
has  the same order of magnitude as the radiation path length 1,. We designate this temperature by 
Teff and shall  try to evaluate it. 

Let the temperature of the gas  at the surface of the body be equal to T,, and a t  the margin 
of the thermal boundary layer-to T, (Figure 32). We shall  find the effective temperature from the 
condition that the thermal flux to  the wall from the isothermal gas  layer a t  this temperature is 
equal to the actual thermal flux: 

We introduce the dimensionless variables: 

(14.35) 

(14.36) 

where A is the thickness of the thermal boundary layer. W e  approximate the course of the temper- 
ature by a branch of the Gaussian curve, assuming 

Then, taking (14.36) and (.14.37) into account, we obtain 

(14.38) 

where i t  is designated that 

(14.39) 

Thus, the only parameter determining Te f f  is the value A/4 l,, proportional to the ratio of the 
thickness of the thermal boundary layer and the radiation path length. Table 20 shows the values 
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0.25 0.5 

0.21 0.16 
23.1 18.9 

4-x x = A  x = R  X-0 

Figure 32. Temperature distribution near the body. 

1 2 5 10. 

0.11 0.048 4.6-10-' 1,6-10-4 
13,7 7.6 3.4 3.0 

Table 20 
Effective Temperature Teff  (T, = lo5; T, = 3 lo3) 

Integral 
Teff. IO-' 

0.25 
27.2 

of the integral from formula (14.38) for several values of this parameter, as well as Teff for the 
case of T, = 3,000°, T, = 100,OOOo. 

Obviously, when A>20 l,, it may be assumed that Teff  = T,. Evaluations of A for specific 
cases of flow about bodies by a hypersonic stream are available in the work of Ye. A. Romishevskiy 
(Ref. 116). In the case of w >> 1 

D 
ViGVFi ' A =  (14.40) 

where D is the characteristic dimension of the body, Re and Pr are Reynolds and Prandtl numbers 
(see Sections 3 and 16). Analysis of formula (14.40) shows that A increases somewhat slowly 
with altitude, and diminishes with the velocity of the body; therefore, the course of the ratio A h ,  
(or of A/4 1,) is determined by radiation path length 1,. In particular, for a body with D = 100 cm, 
according to  the data of Ref. 116, we shall  have: 

when v = 10 km/sec, H = 30 km; A = 5.9 cm, 1, = 10 cm, A/4 1, = 0.15, 
when v = 15 km/sec, H = 30 km; A = 3.16 cm, 1, = 0.2 cm, A/4 1, = 3.95, 
when v = 15 km/sec, H = 50 km; A = 18.2 cm, 1, = 10 cm, A/4 1, = 0.45. 
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Thus, for instance, A/4 1, becomessufficiently large at  high velocities, a t  low velocities, 
and also for large bodies. 

Now w e  may return to  evaluation of the radiation flux for the case under consideration. We 
introduce the value 0 = oT4,ff. Then taking (14.28) into account, we finally obtain from (14.33) 
and (14.34) the expression for the radiation flux 

(14.41) 

and this yields the solution of the problem for o >> 1. 

Section 15. Electron Heat Conduction 

A t  a considerable degree of ionization behind the shock-wave front, air acquires the prop- 
ert ies of plasma. One of the consequences of this is heat transfer by electrons (electron heat 
conduction). It is known (Refs. 42, 47, 52) that electron heat conduction considerably exceeds 
ion heat conduction, since a t  comparable temperatures T, and Ti the thermal velocity of electrons 
is d x t i m e s  greater than that of ions. 

The flux of electron heat conduction is equal to 

4.3 = - %VT,, (15.1) 

where x e  is the coefficient of electron heat conduction. Determination of X ,  (as well as of other 
electron transfer coefficients) is based upon a solution of the Boltzmann equation, which ex- 
presses the distribution of gas  particles in a phase space of coordinates and impulses. The gen- 
eral  theory and solution of the Boltzmann equation by the method of successive approximations 
belongs to  Enskog. An exposition of Enskog’s method and calculations to  the second approxima- 
tion for inhomogeneous gases  is contained in the book of Chapman and Cowling (Ref. 78), calcu- 
lations for completely ionized plasma to  the fourth approximation have been made by Landshoff 
(Ref. 79). Further refinements, connected in particular with the transition from a Lorentz gas  toan  
actual gas,  have been made by Spitzer and Harm (Ref. 80), and the results of the analysis are 
cited in Spitzer’s book (Ref. 57). Formulas determining ne in the absence of a magnetic field 
have also been obtained by V. D. Shafranov (Ref. 52). According to  Spitzer, for a Lorentz gas’ 

‘A Lorentz gas  is here called a mixture in  which particles of one kind (for example, electrons) 
have a negligibly small m a s s  in  comparison to particles of another kind (for example, ions), i t  
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2 '12 k(kT,) 
X ,  = 40 (n) 

m p z L  ' (15.2) 

where L is the Coulomb logarithm that was defined in Section 9. 

In the works of Schirmer and Friedrich (Ref. 81) there is given a detailed derivation of pre- 
cise formulas of xe for the case of multiple ionization in various approximations. Investigation of 
the convergence of these approximations has  shown that if plasma is regarded as a Lorentz (spe- 
cifically, a pure ion) gas ,  the second, and sometimes even the first approximations yield good 
results. For a completely (singly) ionized gas ,  Spitzer and Hiirm have obtained a formula differing 
from (15.2) only by the multiplier 8 ~ ,  which takes into account the difference between the first 
approximation and the precise value. This multiplier is equal to: 

z 1 2 3 4 5 6 
8~ 0.225 0.356 0.446 0.513 0.567 0.608 

Substituting all the values of the constants into formula (15.2), we obtain 

Analogously to (15.2), for ion heat conduction we shall have 

and for their ratio we shall have 

(15.3) 

(15.4) 

(15.5) 

Since for air (m,/m,)x z 163, electron heat conduction exceeds ion heat conduction if Ti < 
7.7Te (when z = 1). Since T, behind the wave front increases rapidly and z increases simultane- 
ously, whereas Ti diminishes, i t  follows that the condition ne >> xi  is satisfied rather quickly. 
The electron-temperature gradient in the compressed layer is directed. toward the wave front, this 
effecting electron diffusion in the s a m e  direction and heating of the gas before the front. The 

being possible to disregard mutualcollisions of the light particles. The second condition is 
fulfilled if either the number of light particles, or the radius of activity of their force field, is 
much smaller than in the case of heavy particles. 
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s i ze  of the diffusion stream, with account taken of the temperature, density and pressure gradi- 
ents ,  has  been computed by Bond (Ref. 29). 

In the boundary layer a considerable temperature gradient directed toward the meteorite body 
is formed. Therefore, electron heat conduction is an additional factor effecting heating of the 
meteorite. 

Experimental determinations of le, carried out by Goldstein, Sekiguchi and Herndon (Ref. 
82) for xenon, neon and helium, are  in good agreement with the theory of Spitzer and Hiirm (Ref. 
80). The only noted divergence is that the dependence of xe on ne is stronger than follows from 
formula (15.2), where this dependence is manifested through the value L. In Ref. 82 an almost 
linear dependence of xe on ne was obtained. However, the authors of Ref. 82 note that this effect 
may be a consequence of incompleteness of the experiment (unaccounted-for variations of Te), 
and besides, all this was observed at very low instances of T, (300-500°K). Therefore, it may 
be assumed that the formulas cited above are applicable for calculating the part played by electron 
heat conduction in the heating of a meteorite. 

However, one significant circumstance must be taken into account here. As has been pointed 
out by G. I. Pokrovskiy (Ref. l l ) ,  if the meteorite body is an insulator (this is valid for stone 
meteorites), the flow of electrons t o  the body will bring about the formation on i t s  surface of an 
electron layer blocking off subsequent electron current and reducing the thermal flux carried by 
the electron heat conduction. If the meteorite material is a conductor (in the case of iron meteors), 
electrons will penetrate the body and, in addition, catalytic recombination of electrons with ions 
will take place on the surface (see Section 16). 

Analogous ideas have been expressed by Bond (Ref. 29), who also drew attention to the pos- 
s ible  appearance of negative potential in the boundary layer, and to  the necessity for taking into 
account the action of a reacting wall (the surface of the body). Bond notes that despite the re- 
search carried out, it is to now impossible to  foresee what will be the influence of the wall on a 
given heat-exchange mechanism. The experiments of P. K. Kabkov (Ref. 11) indicate that the 
thermal erosion (ablation) of bodies situated in a stream of plasma a t  comparatively high temper- 
atures (6,000-10,000~ proceeds considerably more rapidly in bodies which are conductors, and 
less intensively in bodies which are insulators, although more resistant in the thermal sense. In 
the recently published works of Yu. V. Makarov and Yu. A. Polyakov (Ref. 120), there , is  described 
the experimentally observed formation of a negative surface charge on brass models in an air 
stream a t  M a  = 12. Grounding of the model resulted in the adhesion of ions to the model and the 
formation of a positive charge. 

It is possible to  take this into account by introducing into formula (15.1) the correction coef- 
ficient q, which we shal l  conditionally call the coefficient of electron blocking. Then, from (15.1) 
and (15.3), we finally obtain 
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(15.6) 

The determination of 7 for various materials requires special experimental research. 

Section 16. Convective Heat Exchange 

Convective heat exchange is the basic mechanism of heat transfer to  a body situated in a 
stream of oncoming air, even a t  not very high velocities. The question of the quantity of heat 
transferred convectively has  been worked out in detail by Lees (Ref. 83) and Sibulkin (Ref. 84), 
who gave approximate solutions based on the extrapolation of previously obtained formulas for low 
velocities. The expression for the thermal flux a t  the critical point q, has been given by Sibulkin 
in the form:' 

(16.1) . 

where Pr is the Prandtl number, h is enthalpy, p is viscosity, p is gas density, the subscript s 
pertains to the critical point, the subscript e pertains to  the external stream, the subscript w per- 
tains to the wall. The enthalpy difference 

is introduced in place of the temperature difference to account for dissociation. 

Critical analysis of these and other similar solutions (Refs. 85, 86) has  been carried out by 
Fay,  Riddell and Kemp (Refs. 87-89), who gave a precise solution taking into account dissocia- 
tion and diffusion in the boundary layer. Also investigated were various properties of the bound- 
ary layer (establishment of equilibrium, rate of recombination) and their influence on the results. 
The final solution of Fay and Riddell has  the form (in the case of equilibrium dissociation): 

(16.2) 

'In Lees' formula enthalpy is neglected, and in place of 0.763 Pr-o*6 there stands 0.71 Pr-2/3, 
which is almost the same. 
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(in the case of "frozen" dissociation, the exponent in the case of the Lewis number, Le, is equal 
to  0.63). In both cases  the second term in the brackets takes heat transfer by diffusion into ac- 
count. The "dissociation enthalpy" of a unit of mass of the air of the external stream, i.e., the 
dissociation energy per unit of mass, averaged with respect to the m a s s  concentrations of air com- 
ponents, is hD,. 

The ratio of the quantities of heat transferred by diffusion and heat conduction is expressed 
by the Lewis number 

(16.3) 

where D,, is the diffusion coefficient. If L e  = 1, heat is transferred equally well by heat conduc- 
tion and by diffusion, and the expressions for equilibrium and ."frozen" dissociation become iden- 
tical. If, however, Le > 1, in the case  of a "frozen" boundary layer heat transfer increases some- 
what in comparison with the equilibrium layer. The multiplier (pwpw/psepse)o" is of the order of 
unity and increases the value of the flux qs by 10-20 percent. 

Comparison with experiments a t  velocities to 8 km/sec has demonstrated their good agreement 
with formula (16.2), particularly a t  high altitudes. Formula (16.1) and others of i t s  type yield ex- 
cessively low results. 

At meteorite velocities, taking ionization into account is of great importance. A preliminary 
investigation of this question was conducted by Adams (Ref. 90). He assumes that at tempera- 
tures of T _< 8,000°, w - T'/', whereas when T > 8,000°, w -T5/', as for fully ionized gas  (see 
Section 15). Viscosity, when T _< 8,0009 increases according to the law of p NT' /~ ,  then dimin- 
ishes; and when T = 70,000°, the  law of i ts  change approaches the form of p -T5/'. The coeffi- 
cient of ambipolar diffusion exceeds by a factor of 2 the diffusion coefficient for neutral atoms 
and molecules, with D,, -T'/' (at constant density this is true, and under the actual conditions of 
a shock wave, deviations will be sma l l ) .  

Before passing on to further exposition, we shall,,make several remarks concerning the role 
of diffusion in overall heat transfer. In partially dissociated gas the diffusion of atoms with re- 
spect  to  molecules creates a supplementary thermal flux to the body, raising the overall thermal 
flux, as we have seen, by approximately 20 percent. In the presence of partial ionization there 
originates the phenomenon of ambipolar diffusion, i.e., of the transfer of ion-electron pairs with 
respect to  molecules, said phenomenon proceeding twice as fast as conventional atom-molecular 
diffusion (Ref. 90). As a result of the diffusion of atoms and of ion pairs through the boundary 
layer recombination takes place, with the release of energy either in the boundary layer itself, or 
a t  the wall. 
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If, however, the gas  is completely dissociated, but ionization has  not yet begun, atom- 
molecular diffusion is replaced by the process of self-diffusion, which is considered in detail by 
Chapman and Cowling (Ref. 78) and Lees (Ref. 83). Besides the general diffusion brought about 
by the density gradient, thermal diffusion, which depends on the temperature gradient, will a lso 
take place (Ref. 78). 

With the beginning of ionization in a completely diffused gas, diffusion of ions in the gas 
itself (Ref. 91) and electron diffusion occur. The role of the latter increases with the growth of 
ionization. In completely ionized gas  i t  is possible to consider the diffusion of electrons with 
respect to ions, the diffusion effecting heat transfer and charge transfer, i.e., phenomena already 
considered in Section 15. 

Diffqsion phenomena on the whole, and particularly in the presence of ionization, are  suf- 
fuciently complex (see, for instance, Ref. 78). Considering the preceding discussion, however, it 
is clear that s ince the complete dissociation of air behind the shock wave is completed rapidly, 
there is no need to consider atom-molecular diffusion. The gas in the compressed layer will be 
completely ionized, and, therefore, it is ions and electrons that will be diffusing through the 
boundary layer. Depending on the electron density, either ambipolar or electron diffusion will 
take place (Ref. 92). 

Lees  (Ref. 83) has shown that the relationship between the thermal fluxes transferred due to 
heat conduction and diffusion is determined by two parameters: the Lewis number, Le (16.3), and 
the value 

(16.4) 

determining the ratio of the sums of the enthalpies of all the components of the gas a t  the wal l  to 
the difference of the overall enthalpies a t  the margin of the boundary layer and a t  the wall (in 
parentheses in the numerator stands the difference of concentrations of the i-th component a t  
these boundaries). Lees’ analysis pertains to the case of atom-molecular diffusion, and the pres- 
ence of ions and electrons is not taken into account. In this case 

(16.5) 

If L e  = 1, the inflow of heat does not depend on the heat-transfer mechanism. 
J 

In our case  of electron-ion diffusion, the parameter N is determined, as before, by the ex- 
pression (16.4), with substitution of the values of enthalpy, and electron and ion concentration, 
but the Lewis number must be determined by the nature of the diffusion. According to Allis and 
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Rose (Ref. 92), in the case of high electron density, free electron and ion diffusion is replaced by 
ambipolar diffusion. Here only single ionization was considered. The pattern of diffusion in the 
case of multiple ionization has not as yet been considered by anyone, and the Lewis number in 
this case is unknown. But s ince the coefficient of ambipolar diffusion exceeds the corresponding 
coefficient for ions by a factor of 2, i t  is possible as a first approximation to assume that L e  = 2, 
as has  been done by Adams (Ref. go), particularly s ince the L e  number enters into formula (16.2) 
in a power of 0.5 or 0.6 (usually it is assumed that L e  = 1.4). 

Let us now consider the introduced correction for ionization. 

Let the thermal flux due to  convective heat transfer a t  the critical point comprise, in the 
absence of ionization 

(16.6a) 

and in the presence of ionization 

q i  = 4i.T + qi,D, (16.6b) 

where the subscripts T and D denote, respectively, heat conduction and diffusion. W e  designate 

Then, for the desired ratio ql/qo, which determines the correction for ionization, w e  obtain 

and furthermore, according to  Ref. 90, 

(16.7) 

(16.8) 

(16.9) 

where T, is the temperature that is external with respect to  the boundary layer (i.e., the temper- 
ature of the gas  stream in the compressed layer a t  the outer surface of the boundary layer); T, is 
the temperature of the wall; Q; is the energy expended on the dissociation and ionization of a unit 
of m a s s  of the gas  supplied by the stream; ai is the concentration of a given form of ions or 
atoms; /3 is a coefficient approximately equal to  dx, i.e., Pa = 1 for atoms, and Pi = n f o r  
ions, if i t  is assumed that L e  = 2. For the case of complete ionization it may be assumed that 
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(16.10) 

The value t,b is found in the following manner. As a result of the simultaneous solution of 
the equations of energy conservation and momentum, Adams reduces the equation of conservation 
of energy to the form of 

r 
. where i t  is designated that 

(16.11) 

(16.12) 

Here T, = 8,000' is the critical temperature a t  which ionization commences and the heat-conduction 
regime undergoes sharp change, that is, when T > T,, x - T512, whereas when T < T,, x -Til2. 
In accordance with this, n = 1 when 0 5 1, and n = 5 when 0 > 1. p ,  is the density when T = T,; 
a < 1 is a constant connected with the Pr number; Ju/Jx is the gradient of the tangential compo- 
nent velocity in the boundary layer; 77 is the Howard-Dorodnitsyn variable (the y axis  is directed 
along a normal to the surface of the boundary layer): 

(16.13) 
0 

Solving equation (16.11), Adams assumes that in the absence of ionization, n = 1, and in the 
presence of ionization, n = 5. Further designating 

Adams obtains the following expressions for thermal fluxes: 

whence the desired ratio 

(16.14) 

(16.15) 

(16.16) 

( 16.17) 



109 

, 

The functions &,(O) and &(O) . (T,/T,)7/4 have been calculated by Adams (Ref. 90) and are cited 
in the form of graphs; from these graphs it follows that at high temperatures &(O) tends asymp- 
totically toward a value of 0.55, while Oi(0) 
0.2. The value fil,e/~o,e for T, <T, is equal to unity, and for T, > T, 

(T,/Te)'I4 tends asymptotically toward a value of 

(16.18) 

Since under our conditions i t  always holds true that T, > T,, the latter condition (16.18) is valid 
and thus, approximately, 

(16.19) 

Substituting (16.19) and (16.10) into (16.3), and disregarding the wall temperature T, << T, 
in the expression for x, we obtain the following approximate expression for the correction for 
ionization: 

(16.20) 

In calculating the inflow of heat due to convective heat transfer, the Prandtl number Pr is of 
great value. For air it is usually assumed that Pr = 0.71. However, as has been shown by Marshall 
(Ref. 93), in plasma the Prandtl number will be much less ,  since in completely ionized gas  the 
impulse is transferred primarily by ions, while thermal energy is transferred primarily by electrons 
(heat conduction). For completely ionized atomic hydrogen, according to Chapman (Ref. 94), 
viscosity and heat conduction are, respectively, equal to p = 0.96pi, x =  14x;, and, therefore, 

P 
V C P  - 0.96 P i C p  Pr = - - -- = 0.07 Pri 0.05. x 14 xi (16.21) 

A more precise calculation by Chapman and Cowling (Ref. 78) yields for any singly ionized gas  

Pr = 0.065A-'/', 

where A is the atomic weight of ions. For air A = 14.5 and Pr = 0.017. 

(16.22) 

However, the division of the charges in plasma creates an electrostatic field, which, accord- 
ing to  Sen and Guess (Ref. 48) diminishes heat conduction by a factor of 2, thereby increasing the 
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Pr number. The absence of an equilibrium state ,  when Ti > T, and dT;/dy > dTe/dy, brings about 
a sti l l  greater increase of Pr. It may, therefore, be assumed that Pr = 0.05, and this i s ,  after all ,  
an order of magnitude l e s s  than the conventional value. 

104 
105 

105 
104 

For calculations of convective heat transfer a t  the critical point, u se  should be made of 
formulas (16.2) and (16.20), with account taken of the remarks that have been made concerning L e  
and Pr. 

Let u s  now compare the relative part played by all  three of the heat-transmission mecha- 
nisms: convective thermal flux (qc,,,), radiation flux (qrad), and the flux transferred by electron 
heat conduction (qelec). W e  shall make the comparison for the point of the full deceleration of a 
body with a spherical nose that has a curvature radius of R = 1 m for two cases: 

1) Altitude 80 km, n, = 10l6 cm-' (in the shock wave), the case of volume radiation; and, 

2) Altitude 15 km, n, = lozo the radiation flux is evaluated in a diffusion approxi- 
mation. 

The convective thermal flux is calculated according to formulas (16.2) and (16.20), for Te = 

lo5, there being assumed L e  = 2, Pr  = 0.05. The radiation fluxes were determined according to 
the formulas of Section 14 for the corresponding cases. The basic parameters obtained in the 
course of calculation, and which are of interest, are cited in Table 21. 

The values of the thermal fluxes, expressed in terms of ergs/cm2, are cited in Table 22. 

The principal heat-transmission mechanism in all ca ses  is convective heat transfer. The 
influence of radiation is relatively great a t  high velocities and high altitudes. Lower, in the 
dense strata of the atmosphere, despite the overall increase of the radiation flux, i t s  relative 
share falls because of the rapid reduction of air transparency and radiation path length. 

Table 21 
Calculation Parameters 

u,. c m / s e c  
~ _.. 

11,5 
68.5 
8.7 

48.0 

Re 

1.4.10a 
8,4- 1 Oa 
5-10' 
2.8- 10'' 

Teff 

104 
105 

3.9 - .IO3 
2.44- 104 

xe, erg/sec . deg . cm 

1.2.108 
1.7.10' 
1.7.10' 
7.8-10' 

- 
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Table 22 
Thermal Fluxes to the Meteorite Body 

I 

I 

2.3*10'0 
1.6- 10'2 
2.3 - 10'' 
1.6 * 1015 

2.9.109 
1 .3-iOl2 
1.3.10'O 
2.0 * 10'8 

1.7-109 
8.2- 10" 
3.9- 10" 
5.6 * I O "  

2.8. 10" 
3 ~ 7 * 10l2 
2.7 I O "  
2.2 1016 

In regard to electron heat conduction, although the coefficient ne ,  defined according to  
formula (15.3), depends weakly upon n, (approximately in the s a m e  manner as n;.'), with the tran- 
sition to denser strata of the atmosphere, there a sharp increase in the temperature gradient takes 
place (due to reduction of the boundary layer width), and it is this that leads t o  an increase in the 
flux of electron heat conduction almost proportionally to na. As a result, in the lower strata of 
the atmosphere the flux of electron heat conduction may exceed the radiation flux. 

The approximate dependence of all  the thermal fluxes on temperature has the form: 

With a change in the characteristic dimension of the body R ,  the thermal fluxes change in the 
ratio: 

i.e., for large bodies the influence by radiation increases. 

All  of these evaluations have been made without consideration of meteorite evaporation, 
which can considerably change the pattern. This question will be considered in Section 17. - 

Section 17. Concerning Meteorite Ablation 

The question of the mechanism of meteorite m a s s  removal (ablation) has  been discussed 
more than once in works dealing with the physics of meteorites and with meteorite science. Mete- 
orite specialists,  in particular Ye. L. Krinov (Ref. 95), on the basis of analysis of structural 
singularities of the fusion crust of meteorites comes to the conclusion that the basic mechanism 
of meteorite ablation is fusion. Actually, on the surface of many meteorites there are noted 
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perceptible streams and sinters, as well as solidified spatters of molten meteorite substance 
(Figure 33). These phenomena are quite clearly traced out in iron meteorites, in particular in the 
Sikhote-Alinskiy (Ref. 95) and the Yardymlinskiy meteorites (Ref. 96). Ye. L. Krinov therefore 
concluded that a meteorite loses m a s s  as a result of fusion and blowing away of the molten f i lm 
by the airstream. It is reasonable, however, that this conclusion is based upon analysis of phe- 
nomena occurring a t  the final sector of the flight. 

On the other hand, B. Yu. Levin (Ref. l), considering the ablation process of small mete- 
orite bodies, concluded that for these bodies evaporation is the most significant factor. This con- 
clusion is confirmed by comparison with photographic observations of bright meteors by Jacchia 
(Ref. 5) and Ceplecha (Ref. 97). Incidentally, as has been shown by an analysis of this question 
by N. A. Anfimov and M. Ya. Yudelovich (Ref. 98), the conclusion of B. Yu. Levin is insuffi- 
ciently substantiated, since with some variation of the coefficient of blockage of the meteorite 
body with air molecules aA (see Section 2), i t  is possible to obtain results in favor either of evap- 
oration or fusion. N. A. Anfimov (Ref. 99), using the same data as Jacchia and Ceplecha, demon- 
strated that apparently in the removal of meteorite m a s s  both processes are important, evaporation 
predominating a t  the upper sector and fusion predominating a t  the lower. 

This entire discussion is on small meteorite bodies that engender conventional meteors, i.e., 
are valid for movement in conditions of flow with slip. But B. Yu. Levin transfers his conclusion 

Figure 33. Structure of the fusion crust of the Sikhote-Alinskiy meteor. 
(according to  Ye. L. Krinov) 
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concerning the predominance of evaporation to  larger bodies as well. In his opinion, "The basic 
m a s s  loss in  the case of large 'meteorite-forming' bodies is determined by evaporation, although 
there are moments when blow-off of the molten layer plays a substantial part. With the slowing 
down of motion, while fusion is st i l l  possible, blowing off of the molten substance takes place" 
(Ref. 1, p. 77). 

Morphological analysis data on the shape of fallen meteors show that either the shape corre- 
sponds to the crystalline structure (octahedrons, cubes, etc.), is irregular, or is oriented. The 
latter shape (Figure 34) apparently results from action of the airstream flowing about the mete- 
orites, and indicates absence of rotation. According to the opinion of Ye. L. Krinov, meteorites 
that have retained their shape have lost a relatively smal l  portion of their m a s s  in the atmosphere 
(Ref. 95). The use of a helium method, which permits the original dimensions of the meteorite to 
be determined on the basis  of the relationship of the helium isotopes He3 and He' in meteorites, 
and on i t s  distribution along the radius (Ref. loo), has  yielded for the Treys meteorite a reduction 
of the linear dimensions in flight by a factor of 2, i.e., approximately a tenfold reduction in mass .  
Assuming for the coefficients of meteor-physics equations (Section 2) the following entirely plau- 
s ible  values: 

CT = 1.5 - lo-", = 0.5, A = 0.015, Q = 1.2 10" erg/g 

(fusion), Martin (Ref. 100) obtained good correspondence with results obtained by the helium 
method. 

In the development of flights a t  supersonic speeds, and then of space flights, the question of 
the heat protection of space vehicles returning to earth has become especially acute. One of the 
means for such protection is utilization of the phenomenon of ablation, which absorbs a consider- 
able quantity of heat. All of this has resulted in considerable research on the theory of ablation, 

Figure 34. Meteorites of oriented shape: Karakol (left) and Zabrod'ye. 
Permaglypts are clearly seen on the surface. 
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as well as in experimental projects. A survey of foreign literature in this field is given by Adams 
(Ref. 101). 

Considering the heating through of meteor bodies inward prior to  the beginning of ablation, 
B. Yu. Levin, on the basis  of the problem of the heating of a semi-infinite rod with a given thermal 
flux a t  one of its ends, came to  the conclusion that if this thermal flux is expressed by an expo- 
nential law (in accordance with the increase of air density according to  a barometric formula), the 
following regime of temperature distribution is established in a meteor body: 

~ ( x ,  t )  = T(O, t)e-x/xo, (17.1) 

where x is the distance from the boundary of the body, and xo  is the so-called heating depth a t  
which the temperature falls  by a factor of e. According to the calculations of B. Yu. Levin this 
value amounts to  0.03-0.06 c m  for stone meteorites, and 0.09-0.17 c m  for iron meteorites, being 
inversely proportional to v-'/~. Prior t o  the start  of ablation, the temperature of the frontal sur- 
face T(0, t )  -v5/', and thus to  a higher velocity of the meteorite body there corresponds a higher 
temperature a t  a given depth, in spite of the smaller xo. 

If fusion has begun, a steady s ta te  s e t s  in quite rapidly, and the,front of the fusion wave in 
the vicinity of the critical point shifts a t  a constant rate. A precise solution of this case has been 
obtained by G. A. Tirskiy (Ref. 102). The rate of movement of the fusion wave in the case of con- 
stant thermal parameters is equal to 

(17.2) 

where p, c ,  Q are  the density, heat capacity, and latent heat of fusion of the body; To is theinitial 
temperature; Tfus is the fusion temperature. 

In the work of G. A. Tirskiy (Ref. 110) precise formulas are derived which yield the rate of 
movement of the fusion wave, the thickness of the fusion f i lm ,  and the temperature distribution in 
the body for an arbitrary dependence of the thermophysical properties of the body on temperature. 

For very large bodies, it may be assumed that heating spreads into the interior of the body a t  
the same rate as the fusion wave. An important property of fusion is that i t  in no way influences 
the thermal flux to the body and has almost no influence on the boundary layer. 

In the case of evaporation the pattern changes sharply. In front of the surface of the body a 
layer of evaporated molecules is formed which interact with the molecules and atoms of the on- 
coming airstream. The evaporated molecules have a different molecular weight from that of the 
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molecules and atoms of air (in the case of iron meteorites ,u = 56, and in the case of stone mete- 
orites, p = 40-72), and a temperature equal t o  that of evaporation. 

Heat transfer to the body is now no longer independent of the ablation process, as in fusion, 
since the layer of evaporated molecules creates an effect of thermal blockage (also called sweat- 
ing out) (Ref. 101), which reduces the thermal flux to the body. The corrective multiplier $, 
equivalent to the coefficient of thermal blockage employed in the physical theory of meteors, al\ I 
A, is in this case equal to 

(17.3) 

where q, is the thermal flux in the absence of evaporation; M v  is m a s s  rate of evaporation from 
one unit of area; (Ah), is the difference of enthalpies across the boundary layer in the absence of 
evaporation; p is the coefficient of thermal blockage, equal to approximately 0.6 for laminar heat- 
ing, and to 0.2 for turbulent heating. If the effective heat of ablation, Qeff ,  is defined as the 
energy expended for carrying away a unit of m a s s  of substance, we shall  have, in the case of 
fusion (Ref. 103) 

and in the case of evaporation 

Increase of the effective heat of ablation in the case of fusion is determined by supplemen- 
tary absorption of heat by the liquid film, in the case of evaporation, by thermal blockage and 
absorption of heat by the body due to thermal capacity. By Ti is designated the temperature of 
the boundary of the division between the liquid and the hard surface with a gas  layer; c p ~  is the 
specific heat of the liquid. 

It has been shown experimentally that in the case of fusion, Qeff increases by about 50 per- 
cent due to heating of the liquid f i lm (for Pyrex), whereas for evaporation the effect of thermal 
blockage may, a t  high velocities, increase Qeff several times. This indicates that for fusion the 
heat-transfer coefficient A (see Section 2) is equal t o  approximately 0.5, whereas for evaporation 
i t  is of the order of 0.1, this being in agreement with the data on the physical theory of meteors 
(Ref. 1). Unfortunately, the experiments so far pertain to comparatively low velocities. 

In general, m a s s  removal occurs due both to  evaporation and to fusion, which occur simul- 
taneously. The relationship between them is expressed by the "gasification parameter" r* (r, = 0 
in pure fusion, and r* = 1 in pure evaporation). In this case 
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where 

(17.6) 

(17.4a) 

Obviously, when r* = 0, the expression (17.6) passes  into (17.4), and when r* = 1, it passes  into 
(17.5). 

Calculations carried out by Scala (Ref. 104) for high melting quartz-type oxides have con- 
firmed the fact that when r* + 1, the full rate of m a s s  loss, M, is diminished due to the heat- 
blockage effect, and to the increase of the heat of ablation. The value M is determined by divid- 
ing the thermal flux q, (computed with no account taken of ablation) by the effective heat of abla- 
tion Qeff. The latter value, as has already been stated, increases rapidly a s  the flight velocity 
increases and, consequently, a l so  as the deceleration enthalpy increases, the latter value enter- 
ing into the term which expresses the effect of thermal blockage. 

The flight altitude influences the ablation process through the deceleration pressure, on 
which logarithmically depends the temperature (more precisely, the enthalpy) of the liquid film and 
of the gases  a t  the surface of the division. But since the thermal flux to the body and, a t  the 
same time, the surface temperature and the m a s s  loss ,  increase with the growth of deceleration 
pressure, the effective heat of ablation (at constant r,) will remain unchanged. However, under 
real conditions of r*, it will change. In the opinion of Scala (Ref. 104), an increase of decelera- 
tion pressure will bring about a reduction of 
layer), and some decrease in Qeff. 

(due to the rapid fall of the viscosity of themolten 

Thus, a t  the end of the course the part played by fusion increases not only as a result of 
diminution of the velocity of the meteorite, but a lso due to an  increase in deceleration pressure 
due to increasing air density, even if an insignificant slowing down of the meteorite in the final 
section of the course is taken into account. 

An approximate investigation of the conditions of heating and ablation of a flying meteor has 
been carried out by K. P. Stanyukovich and V. P. Shalimov (Ref. 28). They represented the equa- 
tion of thermal balance in the following form: 

(17.7) 

where the thermal flux to the body is on the left side, including aerodynamic heating and radia- 
tion; M is the m a s s  of the body; m is the m a s s  of one molecule; N is the rate of evaporation 
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(cm-' - sec-'); 
temperature of air a t  a given level; and T,, is the average temperature of the body 

is the area of the body; S is the area of the midsection; T, is the equilibrium 

In equation (17.7), the first term on the right-hand s ide takes into account losses  for heat- 
ing; the second right-hand term takes into account losses  for radiation; and, the third takes into 
account those for evaporation. Usually heat expenditures for radiation from the surface of the 
meteorite body are  much smaller than losses  for evaporation, therefore, the second term may be 
disregarded. In subsequent calculations, K. P. Stanyukovich and V. P. Shalimov a lso  disregard 
heat input due to convective transfer and do not take electron heat conduction into account at all,  
while for the shock-wave radiation flux they give a very approximate estimate: (0.1-0.01) UT;. 

Heating through of the meteorite body in depth will take place if the condition 

is fulfilled (q is the overall flux of heat to the body). 

(17.9) 

Approximate calculations by the authors of Ref. 28 show that for an iron meteorite, traveling 
a t  a velocity of 60 km/sec a t  an  angle of 72O to the vertical (R = lo2  cm), to an altitude of 
Hequil = 18 km, heat input will be greater than expenditure for evaporation, and the meteorite 
heats up (primarily a t  the surface), &ter which equilibrium s e t s  in and heating-through ceases .  On 
the other hand, a t  some critical altitude Hcr (in the example a t  hand 12-14 km), the body must be- 
come completely destroyed as a result of evaporation. In the case  of an  iron or stone meteorite 
Hequil > Her; therefore, these bodies may reach earth without being totally destroyed. If, on the 
other hand, we consider an ice body (such i s ,  for instance, considered to  be the Tungusskiy mete- 
orite, which is apparently the nucleus of a s m a l l  comet (Refs. 105, 106)), in such a case Hcr > 
Heq,il, and warming takes place all of the time (of the order of 0.2 sec) during which the body is 
destroyed. If the process proceeds a t  a sufficiently rapid rate, the evaporated particles, in flying 
asunder, can create a strong shock wave, and this  will be analogous to  an  explosion. 

This  phenomenon, which the authors of Ref. 28 have called a "thermal explosion," is equiva- 
lent to  the rapid evaporation of a considerable m a s s  of substance as a result of rapid advancement 
of the boundary of the evaporating layer deep into the body. 

Phenomena of a similar nature have been repeatedly observed in the high-velocity flight of 
aluminum pellets (Ref. l l ) ,  which would suddenly explode without any apparent reason. In this  
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case, however, intensive burning could have taken place, i.e. , the rapid liberation of intrinsic 
(chemical) energy. 

Unfortunately, in  the calculation of K. P. Stanyukovich and V. P. Shalimov, account is taken 
only of integral heating, and not of the temperature distribution along the radius of the body, and 
the calculation itself is of an excessively approximate nature. 

I. V. Nemchinov (Refs. 113, 114) has recently considered the problem of the evaporation of 
the surface of a meteorite under the influence of a thermal flux transmitted by radiation (in the 
approximation of radiant heat conduction). In his work it is assumed that in the vicinity of the 
critical point, the airstream toward the surface of the meteorite and the vapor stream meet at 
some "contact surface," and are immediately removed "aside." It is assumed in advance that the 
entire thermal flux goes for evaporation. The effect of thermal blockage brings about an  increase 
of Qeff  when T = 50,000° by two orders of magnitude; in other words, the coefficient of blockage, 
a h ,  and the almost equal to i t  heat-transfer coefficient, A, have an order of magnitude of lo-'. 
The viscous boundary layer, in which evening out of the velocities takes place, has a thickness 
hundreds of times less than the thermal boundary layer in which evening out of the temperatures 
takes place.' 

In considering the ablation process, I. V. Nemchinov and M. A. Tsikulin (Ref. 114) assume 
that the m a s s  loss  of a meteorite is proportional to the oncoming airstream, in other words, 

- -- d M  -aspv. 
d t  (17.10) 

Let us consider the extent to which formula (17.10) is substantiated. A s  is known, in the 
physical theory of meteors (Ref. 1) it is assumed that the mass loss  is proportional to the energy, 
and it is here that equation (2.2) has i t s  origins: 

The coefficient a in equation (17.10) has the following sense: 

(17.11) 

(17.12) 

where p, v, and h are, respectively, the density, velocity, and enthalpy of gas ,  the subscript w 
pertains to conditions a t  the wall, s to the shock-wave front, c to the contact surface (the plus 

'An analogous result was obtained by Ye. A. Romishevskiy (Ref. 116). 
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sign from the side of the front; the minus sign from the side of the body, i.e., on the contact sur- 
face enthalpy h, undergoes discontinuity). It is not difficult to express the coefficient a in the 
following manner: 

(17.13) 

and, consequently, equations (17.10) and (17.11) are equivalent.’ Since a -l /ps - l / p ~  (PH is 
the density of air a t  the altitude H), the m a s s  loss  per unit of length of the meteorite course is 

- d M  dl - - asp, = const, 

i.e., does not depend upon altitude (at a constant rate of travel). 

(17.14) 

According to the calculations of I. V. Nemchinov and M. A. Tsikulin, in the case of vertical 
fall from an altitude of 50 km’to the surface of the earth a t  a velocity of v = 50 km/sec, m a s s  loss  
due to evaporation for a body with a radius of 10 m amounts to 35 g/cmZ. For smaller bodies, 
m a s s  removal is greater (-fl) due to reduction of the thickness of the boundary layer and of the 
vapor layer, which, therefore, heats through more easily. 

A precise solution of the problem of the equilibrium and nonequilibrium evaporation of a 
blunt body in the vicinity of the critical point (in the case of an arbitrary dependence of the phys- 
ical properties of the body on heat) has been obtained by G. A. Tirskiy (Ref. 111). In distinction 
from the majority of works on this subject (Refs. 113-115), the evaporation temperature T i  is as- 
sumed to be previously unknown and is determined in the course of solving the equations them- 
selves.  The heat of evaporation Qevap depends, generally speaking, on Ti, the latter being a 
function of the partial pressure of vapor (in a gas-vapor mixture) on the evaporating surface pi. If 
the value pi = pio (the equilibrium value), then Ti is equal to the surface temperature. In Ref. 111 
it  is proved that when the accommodation coefficient a > 0.1, the equilibrium condition for evapor- 
ation is fulfilled. However, ”boiling” on the surface of the body, determined by the conditions 

(17.15) 

where c;, is the m a s s  concentration of vapor a t  the surface, while poo is the deceleration pressure 
effected during equilibrium evaporation only in the case of infinitely great thermal flux to  the 

‘It is possible with a sufficient degree of precision to assume the first multiplier in (17.13) to be 
equal to the accommodation coefficient a, the second equal to the coefficient of thermal blockage 
aA (I\ = aaA), and the enthalpy h, equal to the kinetic energy of a unit of m a s s  of the oncoming gas 
v2/2. 
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body. When "boiling" is attained, T i  becomes equal to the evaporation temperature at the given 
vapor pressure, pi = pow It is specifically for these conditions that most of the approximate solu- 
tions were carried out, particularly those in Ref. 115. 

In our case, the thermal flux to  the body is so great (although it is not infinite), that the 
condition (17.15) will be fulfilled to  a sufficient degree of precision. 

In Ref. 112, G. A. Tirskiy solves the problem of simultaneous melting and evaporation of the 
fusion with account taken of air dissociation. However, the gasification parameter does not enter 
into his equations in explicit form, although it may be obtained in the course of their solution. 

The problem of the ablation of a body flowed about by a stream of ionized gas  has not yet 
been considered by anyone. Meanwhile, the presence of ionization introduces additional new 
effects, part of which have been mentioned above (Sections 15, 16). This  is electron heat conduc- 
tion, ambipolar or electron diffusion (the precise mechanism of diffusion under conditions of multi- 
ple ionization has not yet been ascertained), the catalytic role of the surface of the body in re- 
combination and adhesion of electrons. The interaction of electrons with evaporating molecules 
must bring about their ionization, and this is observed, a s  has been demonstrated by meteor 
spectra, for calcium, magnesium, silicon and iron (Ref. 117). All of these circumstances consid- 
erably complicate theoretical consideration of the problem of meteor ablation. 

The experimental material a t  present is a lso  rather small. Experiments in the melting of 
models of Wood's metal and dry ice carried out by Thomas and Whipple (Ref. 4), yield, but a very 
approximate conception of the general course of phenomena. Closer to actual conditions are the 
experiments of I. A. Zotikov (Ref. 118) in the blowing of a supersonic stream about models of 
iron, the temperature of the material going as high as 2,800°K. In these experiments, indentations 
characteristic of meteorites-permaglypts (Figure 34)-were obtained; these, in the opinion of the 
author (Ref. 16), are brought about by turbulent phenomena in the boundary layer. Two facts 
speak in favor of this supposition: (1) a rather strictly maintained relationship between the 
dimensions of the permaglypts and those of the meteorite itself; and, (2) high Reynolds number 
values in the area of meteoric phenomena corresponding specifically to  the turbulent boundary 
layer. 

It is possible to count another two or three works of analogous content. Recently, attempts 
have been made in the United States to simulate meteoric phenomena by shooting aluminum bullets 
from rockets a t  high altitudes (at velocities of up to 10 km/sec). However, these experiments 
were not used to study the course of ablation. 

Thus, the problem of the ablation of meteor bodies is sti l l  far from a final solution, and 
requires further research. 
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CONCLUSION 

! 

, 

What is a t  present the general s ta te  of the problem of the movement of large meteor bodies in 
the atmosphere? 

Unquestionably, the difference in the regimes of flow about meteorites and s m a l l  meteoric 
bodies (meteors) brings about substantial differences in the nature of their deceleration, heating 
and ablation. A meteorite creates a single detached shock wave, and in the case of an irregular 
shape, a complex system of waves. Behind the wave front there occur various nonequilibrium phe- 
nomena, the most important part among which is played by ionization. The large amplitude of the 
wave brings about a discontinuity in the temperatures of the electron gas  and the ion gas ,  which 
thereupon gradually even out, but there is not always time enough for the establishment of an 
equilibrium s ta te  behind the wave front. A precise pattern of the temperature distribution behind 
the shock-wave front has  not yet been obtained, and the pattern of current fields with account 
taken of ionization has  a l so  not been obtained. 

Although the basic mechanisms of heat transfer to the body are  known, and numerical evalua- 
tions of them are available, both the question of the influence of the body itself on the temper- 
ature distribution, and the question of ionization in the boundary layer for such strong shock 
waves have as yet been insufficiently studied. Still more complex is the problem of heat transmis- 
sion to  a body undergoing ablation. The mechanism of diffusion in the case of multiple ionization 
has not been studied, and the influence of ionization on heat transfer has  been insufficiently 
studied. Almost no one has  taken into account either electron heat conduction or the catalytic 
influence of the meteorite surface on heat exchange. 

It may be considered doubtless that meteorite ablation takes place both by means of fusion 
and by means of evaporation. But the relative part played by these processes a t  various sectors 
of the flight and a t  various velocities has  not been finally ascertained. And determination of the 
overall relative m a s s  loss of meteorites in the atmosphere depends on the solution of bhis problem. 

Of great importance to the solution of these problems would be not only subsequent theoreti- 
cal investigations, but a l so  properly organized photographic observations of bright bolides (in 
particular, of their spectra), as well as experimental work. 

W e  shall present some specific problems for subsequent research. . 
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1. Theoretical projects. 

(1) Subsequent study of the influence of ionization on the parameters of the shock wave and 
on the heat-transfer mechanism. 

(2) Refinement of the mechanism of the initial stage of ionization. 

(3) Study of the diffusion process in the presence of multiple ionization. 

( 4 )  Study of the influence of the surface properties of a meteorite on recombination and elec- 
tron adhesion. / 

(5) Solution of the boundary-layer equations with account taken of evaporation and ionized 
gas. 

(6) Refinement of the temperature distribution in the shock wave with account taken of radi- 
ant heat conduction. 

(7) Manifold investigation of the process of meteor deceleration in the atmosphere. 

2. Observational projects. 

(1) Organization of a photographic service for bright bolides and their trails, including 
spectrography through an obturator. 

(2) Investigation of energy distribution in the spectrum of bright bolides to  determine the 
nature of the radiation and i ts  effective temperature. 

(3) Subsequent observation of atmospheric bands and lines in the spectra of trails and 
"tails" of bright meteors with the a im of study of the composition of ions in the trails and the 
processes of recombination. 

3. Experimental projects. 

(1) Subsequent investigation of the fusion of models with the a im of studying the process of 
permagl ypt format ion. 

(2) Investigation of the process of m a s s  removal (ablation) of the substance of typical mete- 
orites, in installations that create high-temperature gas streams. 
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(3) Investigation, in shock-wave tunnels of the structure of shock waves formed by actual 
meteorites. 

(4) The use of rockets for launching artificial meteorites with a previously known m a s s ,  
composition and velocity. 

The present enumeration can undoubtedly be extended, but the accomplishment of even a part 
of the indicated projects would be of great value not only for meteorite science, but a lso for the 
problem of the return to  earth of space ships from interplanetary flights. 

j 
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